Multiscale Simulations of Hydrogen Adsorption in Nanoporous Materials

Liviu P. Zârbo INCDTIM Cluj-Napoca

Multiscale Simulations of Hydrogen Adsorption in Nanoporous Materials

Liviu P. Zârbo INCDTIM Cluj-Napoca

Hydrogen Storage

• Clean energy vector. $2H_2+O_2=2H_2O + 142MJ/kg$

Energy density	MJ/kg
Hydrogen	142
Methane	55.5
Gasoline	46.4
Li battery	1.8

• Problem: renewable energy output fluctuations.

• Efficient H2 storage: maximize the use of renewables, significantly reduce the fossil fuels dependence, pollution-free cities, dependable energy supplies for remote communities.

Mature Hydrogen Storage Technologies

• Liquid H_2 (~30% loss with cooling) – few new developments.

• High-pressure (>700bar) tanks - still actively pursued.

• Car makers: BMW, Daimler, Ford, Honda Hyunday, Nissan, Volkswagen, Mercedes.

2Stations.org

Hyunday Tucson FCV \$499/month, 36-mo lease

Status January 2016 © Ludwig-Bölkow-Systemtechnik GmbH www.lbst.de

But,

- Most (~96%) H₂ comes from fossil fuels.
- Established storage tanks: still energetically inefficient, still expensive, bulky, hard to scale up for onboard use.

Comparison Between Storage Methods

Materials -based Storage

Stetson N. An overview of U.S. DOE's activities for hydrogen fuel cell technologies. Clearwater, **i** Florida, America, 2/27/2012.

interstitial hydrides ~100-150 g H₂/L

complex hydrides ~70-150 g H₂/L

chemical storage ~70-150 g H₂/L

sorbents ≤ 70 g H₂/L

water 111 g H₂/L

5/19/2016

Hydrogen Storage in Materials

• Chemisorption (metallic hydrides, complex hydrides, etc.).

pro: high volumetric absorption capacities;con: slow kinetics, complex heat management, faster degrading of the storage material, poor reversibility.

• **Physisorption** (metal-organic frameworks, zeolites, clathrates, activated carbons, etc.)

pro: fast sorption kinetics, simple energy management, good reversibility. **con:** low adsorption capacities at room temperature (low adsorption enthalpies Q_{st}).

An Interdisciplinary Team

- <u>Daniel Bîlc</u> theory (solid state computational chemistry),
- Marius Oancea theory (computational chemistry),
- Ioana Grosu chemistry (synthesis),
- Gabriela Blăniță chemistry (synthesis and adsorption measurements),
- Dan Lupu chemistry (synthesis and adsorption measurements),
- Ioan Coldea engineering (device construction and adsorption measurements),
- Xenia Filip NMR measurements,
- <u>Claudiu Filip</u> NMR measurements.
- Maria Miclăuș X-ray scattering,
- Gheorghe Borodi X-ray scattering.

Polymers decorated with polarizable moieties

Multiscale Adsorption Simulations Project

- 1. Nucleus project: develop the multiscale adsorption simulation methodology \rightarrow new activity of the hydrogen storage group.
- 2. TE 2014 project: universal multiscale simulations for hydrogen storage.
- 3. New research direction: electrically controlled adsorption in nanoporous solids.

Metal-Ligand Bond

- Lone pair electrons on the linker
- Empty metal orbitals.

Organic linkers

Ethylenediaminetetraacetate ion (EDTA⁴⁻)

Metal-Organic Frameworks (MOFs)

- Secondary building units (SBUs) connected by organic linkers.
- Practically unlimited topologies.
- Crystalline with large tunable pores → large surface areas.

 $X = H(\textcircled{0}), Br(\textcircled{0}), NH_2(\textcircled{0}), NO_2(\textcircled{0}), C_4H_4(\textcircled{0}), (CH_3)_2(\textcircled{0}), (OC_3H_5)_2(\textcircled{0}), (OC_7H_7)_2(\textcircled{0}), (OC_7H_7)_2(OC$

Science 341, 974 (2013)

Unlimited MOF Topologies

5/19/2016

Adsorption in Metal-Organic Frameworks

- DOE benchmarks for hydrogen adsorption 5.5wt%, 40g/l by 2020, 7.5wt%, 70g/l final quite ambitious! 700bar hydrogen: 40g/l Liquid hydrogen: 70.8g/l
- Promising MOFs and COFs for hydrogen storage only at 77K and below.
- Still, Q_{st} too low (3-10kJ/mol), while optimum is at 15-20kJ/mol. How to increase Q_{st}?

Adsorption in Metal-Organic Frameworks

MOF	BET m²/g	Langmuir m²/g	P(bar)	T(K)	wt%	g/l	Q _{st} (kJ/mol)
MIL-101		5500	80	298	0.43	1.84	10
			80	77	6.1	26.1	
HKUST- 1	1154	1958	50	77	3.6		4.5
			65	298	0.35		
IRMOF-6	2804	3305	45	77	4.63	31.7	

Chem. Soc. Rev. 38, 1294 (2009)

• Good performance at 77K

- Poor performance at SATP.
- Still far from DOE targets
- Adsorption enthalpy should be ~20kJ/mol

To increase adsorption in MOFs

• Design MOFs with large accessible surface area and pore volume;

- linker functionalization, unsaturated metal sites, chemical doping (e.g. Li doping), etc.
- What about some physics idea? Use electric fields

Nucleus project: Multiscale Adsorption Simulations Methodology

1. Ab initio simulations:

- 1. Binding sites,
- 2. Binding energies,
- 3. Stability of MOF structure.
- 2. Adsorption isotherms
 - 1. Grand canonical Monte Carlo adsorption simulations.
 - 2. Direct comparison with experiments.

More on Ab Initio Simulations

• molecular models:

COF-105

binding sites S1, S2, etc.;

- а. b. **S1** C. **S4** d.
 - J. Phys. Chem. C 112, 9095 (2008)

- Binding energies;
- Bulk properties, structural stability from periodic DFT;

Grand Canonical Monte Carlo

J. Phys. Chem. C 112, 9095 (2008)

- H_2 molecules in a MOF cell.
- H₂ >~< binding sites via van der Waals interactions (modeled by force fields);
- Operations: insertion, deletion, translation, rotation of H₂ molecules at each step;
- N becomes constant \rightarrow convergence.

Adsorption in Electric Field

- Q_{st} increase: open metal sites, ions, linker functionalization, impurities... hard to control
- Alternative: E-field induced dipoles of H₂ and MOF.
- Pro: E easier to control than P, T, might take much less energy.
- Con: we need to find polarizable MOFs with large enough pores.

So Far on Electrically Controlled Adsorption

Adsorption on substrates BN, AlN, graphene

Exp: Adsorption on coronene and TiO₂ Exp. Adsorption on activated carbon

d OV 800V 1000 1200V 1500V 0.4 2000V 3000V 0.2 0.0 30 60 90 Pressure (bar)

Hydrogen uptake (wt.%)

PNAS 107, 2801 (2010), J. Nanopart. Res. 14, 1256 (2012), Int. J. Hy. En. 37, 11842 (2012).

Int. J. Hy. En. 37, 16018 (2012)

Carbon 48, 876 (2010)

- Too large fields (~23000MV/m)
- MOFs?

Reactor for Sievert Measurements in Electric Field

A Simple Test

H₂ on benzene

H₂ on azaborine

 $E_b(E=0) = 5.2kJ/mol$

What About MOFs?

5/19/2016

Molecular Models for Adsorption

BDC

TTDC

 $E_b=4.55 kJ/mol$

E_b=4.82kJ/mol

 E_z = 0.01 E_b =4.33kJ/mol E_z =-0.01 E_b =5.54kJ/mol

 E_z = 0.01 E_b =4.78kJ/mol E_z =-0.01 E_b =5.74kJ/mol Isn't E_z too large?

Larger Molecular Models – IRMOF-20

Highly Polarizable Nanoporous Materials

- 2013 Daniel, Claudiu: combine high-k dielectrics + organic linkers → novel HPNM materials.
- But, higly polarizable MOFs do already exist.

Why Is Ferroelectricity Desirable?

Dielectric Anomaly:

b) 1.955 2.453 (2.431)

Angew. Chem. 123, 11643 (2011)

Ferroelectricity from structural transition (orthorhombic – monoclinic).

 \mathcal{E}_1

A MOF perovskite:

- Needs slow heating/cooling.
- Too small pores.

A Ferroelectric MOF with Large Pores

INCDTIM

5/19/2016

The Rational Design Cycle for Gas Storage Materials

