

TiO₂ nanotubes/graphene-based nanomaterials to address the emerging contaminants pollution

Crina Socaci, 08.10.2020

- NO Grants Collaborative Research Projects 2019 Call
- **Duration time**: 01/09/2020 to 31/08/2023
- Total budget from the program: 1.164.000 Euro
- > Partners:
 - INCDTIM Cluj-Napoca PP (Project promoter)
 - University of South-Eastern Norway (P1)
 - IFIN HH (P2)

- Main thematic area: Environment;
- Main key topic: Management of emerging pollutants in aquatic systems (impact, remediation and recycling techniques) to improve ecosystem services of water resources and wetlands;
 - Starting point of the proposal: Project number PN-III-P1-1.2-PCCDI-2017 0743/44PCCDI/2018, within PNCD III, Development of eco-nano-technologies for surface functionalization of textile and leather materials by plasma treatment at atmospheric pressure - Grant responsible Marcela Rosu
 - Further help received from Dr. Mary Anderson-Glenna, senior EU project advisor at External Funding Team Coordinator, Research and Innovation Unit, USN Norway

- Contaminants of Emerging Concern: a group of chemicals (e.g. drugs, personal care products, detergents, pesticides, food additives), typically detected in aquatic ecosystems and wastewater are not yet monitored and well regulated by authorities
- They are mainly discharged into WWTPs and only incompletely removed during conventional treatment;
- Concentration levels range from few ng/L up to several μg/L;
- No trends towards decreasing concentrations can be seen over the last decades;
- Knowledge on eco-toxicological effects is limited.

mical Reviews

p

e 1. Average Concentration of EOCs in Influent and Effl

family	compounds	WWTPs influent (ng L ⁻¹)	WWTPs effluent (ng L ⁻¹)	removal rate (%)
iotics	clarithromycin	344	150	56.40
	ciprofloxacin	620	234	62.25
	doxycyclin	650	420	35.38
	erythromycin	580	297	48.79
	methronidazole	90	55	38.89
	norfloxacin (NFX)	115	53	45.74
	ofloxacin (OFX)	482	171	64.52
	roxithromycin	780	472	39.49
	sulfamethoxazole (SMZ)	320	264	17.50
	sulfapyridin	492	81	83.54
	tetracyclin (TC)	48000	2375	95.05
М	trimethoprim	430	424	1.40
Γ	ofloxacin (OFX) roxithromycin sulfamethoxazole (SMZ) sulfapyridin tetracyclin (TC)	482 780 320 492 48000	171 472 264 81 2375	64. 39. 17. 83. 95.

	analgesics and	codeine	2860.5	1930	32.53
	anti- inflammatories	diclofenac (DCF)	1550	900	41.94
infla	innammatories	ibuprofen (IBU)	13482	3480	74.19
		ketoprofen (KTP)	2650	800	69.81
		ketorolac	407	228	43.98
		naproxen (NPX)	7800	2200	71.79
	lipid regulators	bezafibrate	1948	763	60.83
		clofibric acid (CFA)	215	131	39.07
		gemfibrozil	2100	1300	38.10
beta-block	beta-blockers	acebutolol	335	140	58.21
		atenolol (ATL)	1250	800	36.00
		celiprolol	440	280	36.36
		metoprolol	1535	679	55.77
		propanolol	198	102	48.48
		sotalol	1667	790	52.61
	diuretics	amidotrizoic acid	2500	2494	2.40

Norway grants

Table 4Advantages, drawbacks and recommendations for each advanced treatment.

Advanced Treatment	Advantages	Drawbacks	Recommendations
UV/H ₂ O ₂	 Moderate-good CEC removal at lab/pilot scale Effective as disinfection process too 	 Formation of oxidation transformation products No full-scale evidences on CEC removal Higher energy consumption compared to ozonation, specifically when high organic matter concentration acts as inner filter for UV radiation. 	Toxicity tests recommended
Photo-Fenton	 High CEC removal Use of solar irradiation Effective as disinfection process too	 Formation of oxidation transformation products No full-scale evidences on CEC removal At neutral pH 7 addition of chelating agents necessary. Large space requirements for solar collectors 	Toxicity tests recommended
UV/TiO ₂	 High CEC removal Use of solar irradiation Effective as disinfection process too	 Low kinetics Formation of oxidation transformation products Catalyst removal Large space requirements for solar collectors 	Not possible to apply until more efficient photocatalysts (at least one order of magnitude) will be developed
Ozonation	 High CEC removal Full scale evidence on practicability Partial disinfection Lower energy demand compared to UV/H2O2 and membranes 	 Formation of by-products (NDMA, bromate) and other unknown oxidation transformation products Need for a subsequent biological treatment (e.g., slow sand filtration) to remove organic by-products 	 Toxicity tests recommended NDMA and bromate should be monitored
Powdered activated carbon (PAC)	High CEC removalFull scale evidence on practicability	 PAC must be disposed Post-treatment required (membrane, textile or sand filter) to prevent discharge of PAC Production of PAC needs high energy Adsorption capacity may fluctuate with each batch 	Test with different products/process configurations recommended

■ The overall objective of the present proposal is the development of a method for the removal of emerging contaminants from aqueous solutions. As such, we propose an experimental laboratory set-up based on nanostructured ternary systems with improved visible-light-driven degradation capability.

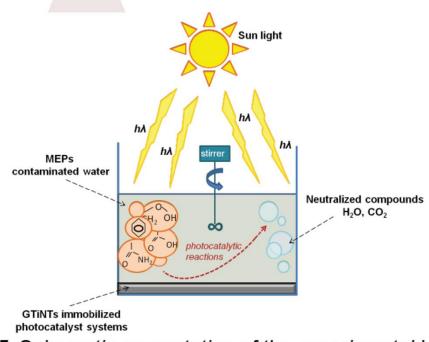


Figure 5. Schematic presentation of the experimental laboratory set-up.

Development to TRL = 4. The TRL 4 means that the method is proved to function at laboratory scale and will contain: (i) Fundamental research - the optimum photocatalyst in terms of reactivity;

(ii) Engineering – optimization of reaction conditions – optimal deposited surface, irradiation wavelength, reaction time.

The specific objectives and estimated results

- (O1) Identification of hierarchical nanostructures with improved photocatalytic activity in the UV-visible spectrum (towards visible) that will be applicable for the model emerging contaminants degradation.
 - Variants of ternary nanohybrids based on TiO₂ nanotubes/graphene/metallic nanoparticles with tailored physicochemical characteristics and enhanced photocatalytic properties on the degradation of the model emerging pollutants.
- ➤ (O2) Evaluation of the photodegradation performance of the ternary nanohybrids based on TiO₂ nanotubes/graphene/metallic nanoparticles in the degradation processes of emerging pollutants.
 - To determine the photocatalytic reaction pathways of the model emerging pollutant degradation.

The specific objectives and estimated results

- (O3) For practical advantages, the determination of the most efficient method of ternary nanopowder deposition on a suitable support that ensures the highest efficiency in the photocatalytic degradation of the various emerging pollutants from water.
 - Variants of ternary nanohybrids immobilized on a surface as photocatalytic systems.
 - Study regarding the photocatalytic properties of ternary nanohybrids immobilized systems

The INCDTIM team

- Crina Socaci
- Marcela Rosu
- Monica Dan
- Teodora Radu
- Diana Lazar
- Alexandra Ciorita
- Alexandru Turza
- Veronica Floare-Avram
- Adriana Vulcu
- Dragos Cosma
- Alexandra Urda
- Anca Muresan

