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Scientific floating point computation: 

numerical music or numerical noise? 

Leslie Fox: 

                IMA Bull., 7, 296-302 (1971), 

“I have little doubt that about 80 per cent 
of all the results printed from the 
computer are in error to a much greater 
extent that the user would believe ..” 

Other enhancements of this statement: 

• M.G. Cox and P.M. Harris, Numerical analysis for algorithm design in 

       metrology, 83 pp., April 2004 

• Sven Hammarling, An introduction to the quality of computed solutions, 

       in B. Einarsson, Ed., Accuracy and Reliability in Scientific Computing, 

       pp. 43-76, SIAM, Philadelphia, PA, USA, 2005 

• N.S. Scott, et al., e-Collisions using e-Science, MMCP 2006, 

       High Tatra Mountains, Slovakia, Aug. 28 – Sept. 01 2006 



The modeling of physical phenomena within numerical 
experiments often asks for the evaluation of huge numbers of 
Riemann integrals by numerical methods. 

  

The study of the behavior of a system under sudden change of 
an inner order parameter, which results in drastic modification 
of the mathematical properties of the integrand (e.g., in phase 
transitions or processes involving fragmentation or fusion) 
cannot be accommodated within the standard automatic 
adaptive quadrature (AAQ) approach to the numerical solution 
due to the impossibility to decide in advance on the correct 
choice of the convenient library procedure. 

 

The Bayesian automatic adaptive quadrature (BAAQ) tries to 
solve integrals by merging rigorous mathematical criteria with 
the reality of the hardware and software environments. 



The BAAQ generates a subrange binary tree associated to the 
automatic subrange subdivision process under probabilistic check 
of a hierarchically ordered set of conditioning criteria which 
ensure the exclusion of each of the following five kinds of  
unacceptable integrand features at each tree node: 
 

  1. Catastrophic cancellation by subtraction. 
  2. Integrand oscillations at a rate beyond the resolving power  
      of the current integrand profile. 
  3. Rates of variation of the integrand inside monotonicity  
      subranges beyond maximally allowed polynomial thresholds. 
  4. Inner isolated integrand discontinuities. 
  5. Irregular, unsolvable by quadratures, behavior of the  
      integrand function inside the integration domain. 
 

The present paper derives quantitative conditioning criteria  
able to replace the empirical ones previously formulated for the  
solution of the third feature mentioned above.  
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Gradual partition refinement 

The AAQ approach results in an integrand adapted 

discretization of             which defines a partition of             
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Over each subrange of the partition           a local quadrature 

rule yields an approximate value q of the integral, together 

with a local error estimate           The global approximate 

solution                         is got by summing up the individual 

outputs over subranges. 

A gradual refinement of         is performed until some 

prescribed accuracy condition is fulfilled, or a failure 

diagnostic is issued. This can be described in terms of an 

evolving subrange binary tree over which BAAQ damps 

down the five unwanted features mentioned above. 
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Interpolatory quadrature sums 

An interpolatory quadrature sum approximates a proper 
or improper one-dimensional Riemann integral, 

 

 

by means of an interpolatory algebraic polynomial, 

 

 

the values of which equate those of the integrand function      

          at a specific set of quadrature knots        , 
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Integrand profiles 

Each ancestor of a terminal node in the subrange binary tree 

is characterized by its own current integrand profile set, 

which is inherited by its descendents. 
 

Definition 2. For each descendent in the subrange binary tree, 

values of the integrand function are available for Bayesian 

analysis over the extended integrand profile,  
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Definition 1. A local quadrature rule which asks for 2n+1 

inner quadrature knots over the node             of the subrange 

binary tree associates to the integrand function            the 

current integrand profile for  
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Integrand profile distributions sampling 

•The integrand profile subject to Bayesian analysis is not necessarily 

restricted to a single subrange only. It covers any convenient subset 

of the global integrand sampling associated to the partition  

• The most frequent local quadrature rules use integrand values at 

Gauss-Kronrod (GK) or Clenshaw-Curtis (CC) quadrature knots. 

• Their property of being spanned by characteristic basis sets of 

orthogonal polynomials results in highly non-uniform distributions 

of the quadrature knots inside each subrange of          the highest 

around the subrange ends, the lowest around its centre. 

• Thus, the reliability of the validation of a tentative inner 

discretization abscissa       of         is significantly stregthened 

provided the Bayesian analysis setting the conditioning diagnostic  

of the integrand is done inside a neighborhood which  contains 

pieces of integrand profiles from the two subranges adjacent at  
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The well-conditioning Ansatz 

 Definition of monotonicity intervals within a piece of 

integrand profile of interest asks for the computation of the 

integrand variations                               in-between successive 

abscissas xk and xk+1. An abscissa xk approximates an extremum 

        of the integrand provided  
 

The set of intervals                       obtained in this way define 

the monotonicity intervals of interest. 
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 Ansatz 1. Let                                denote three successive 

abscissas in the integrand sampling over a monotonicity interval. 

(a) If                               then the expected rate of variation of a 

well-conditioned integrand over                     cannot exceed that 

of a second degree polynomial. 

(b) If                               then this rate of variation cannot exceed 

that of a third degree polynomial. 
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GK 7-15 

GK 10-21 

CC 15-31 
Contain  

four inner 

quadrature 

knots over 

distances 

equating 

the inter-

knot 

distances 

at 

subrange 

centre.   

Lateral close proximity neighbourhoods 

of terminal subrange ends 



GK 7-15 

GK 10-21 

CC 15-31 

Central close proximity neighbourhoods 

 of two-sided subrange ends 

Contain  

seven 

inner 

quadrature 

knots over 

distances 

equating 

the inter-

knot 

distances 

at 

subrange 

centre.   



The Bayesian sensitivity norm, νB       

 Definition:                    

 The algebraic degree of precision         related norm is 

defined over the current integrand profile as 

 

 

It sets an upper bound to the Bayesian analysis resolving power. 

 The floating point degree of precision           related norm 

over a subrange                            is defined as 

 
 

 

 Discussion:       prevails over usual subranges. However,   

is the appropriate quantity on both very small or very large 

subranges, or on subranges very far apart from the origin, 

where 
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Algebraic Degree of Precision 

The quadrature sum                      solves exactly the 
polynomial integrals over the fundamental power set, 

 
 

The maximum degree     , at which these identities hold, 
defines the algebraic degree of precision of the quadrature 
sum                   . 

In the literature, the algebraic degree of precision, d, is 
considered to be a specific universal parameter of a given 
interpolatory quadrature sum, irrespective of the extent and 
localization of the integration domain on the real axis. 
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Floating Point Degree of Precision (1) 

In floating point computations, the above property of the 
monomials       of bringing distinct, non-negligible 
contributions to σm may get infringed both at integration 
limits β << 1 and β >> 1 . 

The maximum degree              at which the identity of the 
individual monomial contributions is preserved in floating 
point computations defines the floating point degree of 
precision of the quadrature sum. 

Its definition is formalized in the next two slides. 

lx

fpd d

In the calculation over      of the set of probe integrals 

 
each monomial       entering the integrand              brings a 
distinct, non-negligible, contribution to       . 
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Floating Point Degree of Precision (2a) 

1. Let                  denote the integration range of interest. 

2. Let                 , a quadrature sum of algebraic degree of 
precision d , be computed over a set of t-bit floating 
point machine numbers (t = 52 in double precision). 

3. Let ξ > 0, let fl(a) denote the floating point approximate 

 of            , and let [a] denote the ceiling of  fl(a). 

4. Let 
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Floating Point Degree of Precision (2b) 

5. For the integration range [α, β] we define 

                                                                           , 

 
    The quantities dX  and dρ are computed from 4.  

6. Then the floating point degree of precision,        

    associated  to                  is the positive integer 
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Gauss-Kronrod 10-21 
local quadrature rule 

Features of the Floating Point Degree of Precision 

• Gliding integration range [0,1] on the real axis. 

The following plot gives outputs for the family of 1024 integration ranges 

{[jα, jα + β], α = β = 1; j = 0, 1, ..., 1023} 

Variation of the floating 

point degree of precision 

of the GK 10-21 local 

quadrature rule over the 

gliding range [0, 1] versus 

its distance j from the 

origin. It is shown that    

dfp = d = 31 at low j values 

(j = 0, 1, 2), then dfp 

abruptly decreases at 

larger but small enough j, 

to show slower decreasing 

rates under the 

displacement of [0,1] far 

away from the origin, 

reaching a bottom value 

dfp = 5 at 701 ≤  j ≤ 1023. 



Features of the Floating Point Degree of Precision 

• Inflating integration range [0,j] on the real axis. 

The following plot gives outputs for the family of 1023 integration ranges 

{[0, j], j = 1, 2, ..., 1023} 

Gauss-Kronrod 10-21 
local quadrature rule 

Variation of the floating 

point degree of precision 

of the GK 10-21 local 

quadrature rule over the 

inflating range [0, j] 

versus its width j. The plot 

of the computed values of 

dfp points to a behaviour of 

dfp which is similar to that 

reported in the previous 

case dfp = d = 31  at  j = 1, 

2, 3; abrupt and then 

milder decreasing rate 

down to dfp  = 5 at 

 702 ≤ j ≤ 1023.  



Features of the Floating Point Degree of Precision 
• Non-equivalence of the siblings in the binary subrange tree.  

Case study of the root domain [0, 220]   

Gauss-Kronrod 10-21 
local quadrature rule 

A binary subrange tree is built up 

to n-th depth level by bisection of 

the parent ranges. Comparison of 

the dependencies of the floating 

point degrees of precision of the 

GK 10-21 local quadrature rule 

on the depth level in the binary 

subrange tree generated by the 

root range [0, 2n], for the leftmost 

and the rightmost siblings are 

plotted for n=20. 

While the floating point degree of 

precision of the rightmost siblings 

in the binary subrange tree keeps 

the minimal dfp value of the root 

range [0, 2n], the values of the 

floating point degree of precision 

of GK 10-21 for the leftmost 

siblings  increases from the initial 

minimal dfp value up to the 

maximally possible value  

dfp=d=31 at the last depth levels. 
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Quantitative well-conditioning criteria 

(Preliminaries) 

 Monotonicity interval subject to analysis: 

 Definition 3. The above sequence is specified as follows: 

   - closed, if both       and         are extrema of   

   - open, if neither      nor         are extrema of   

   - closed to the left, if       is an extremum, while         is not; 

   - closed to the right, if       is an extremum, while         is not. 

 Definition 4. The ends of the monotonicity interval are isolated 

from each other provided we can define two second order divided 

differences,                 and                    such that 
 

 Corollary. The Definition 4 results in the condition            i.e., 

that the monotonicity interval extends over five consecutive 

abscissas at least. 
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Consistency criterion #1 

(local, over a triplet of abscissas) 
 Let                                               denote a piece of integrand 

profile spanned over the open sequence  

 The following conditions are consistent with the integrand 

well-conditioning inside 
  

(i1) If                          and                           then 
 

(i2) If                          and  

                                    then 
 

(ii1) If                         and                         then 
 

(ii2) If                          and 

                                    then 
 

In these equations,   
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Consistency criterion #2 

(global, over a closed sequence) 

 Let                                 denote a closed sequence defining a 

piece of integrand profile 

and let 
  
  

  (i) The condition                   is consistent with the integrand 

well-conditioning both in the right lateral neighborhood of      

and the left lateral neighborhood of  
 

  (ii) Otherwise, the clarification of the integrand conditioning 

inside the two above-mentioned lateral neighborhoods asks for 

further analysis of the integrand behavior over finer samplings 

inside                and                    respectively. 
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Consistency criterion #3 

(local, at terminal closed endpoints) 

 If                                 is closed to the left and/or to the right, 

then the following consistency criteria hold. 
  

 If it is closed to the left, let 
  

  (i1) The condition                   is consistent with the integrand 

well-conditioning inside the right lateral neighborhood of 

  (i2) Otherwise, further integrand analysis over a finer 

sampling inside                is needed. 
 

 If it is closed to the right, let 
  

  (ii1) The condition                    is consistent with the integrand 

well-conditioning inside the left lateral neighborhood of 

  (ii2) Otherwise, further integrand analysis over a finer 

sampling inside                   is needed. 1( , )x x 
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Quantities involving differences 

 First order divided differences: 

     The first order divided difference of the integrand           over 

the pair                                       is given by 

 
   

and it approximates the integrand slope over 
  

 Second order divided differences: 

     The second order divided difference of the integrand           

over the triplet                                                is given by 

 
 

and it approximates the integrand curvature over 
 

 Interval ratios:   
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Redefinitions for accurate computation of differences  

 Redefined first order divided differences: 

     Given the pair                                        then 

 
   

 Redefined second order divided differences & interval ratios: 

    If                                                 refer to a same subrange, 

 
  

 

  If                a discretization abscissa of the partition          then 
 

  (i) inside 
 

 (ii) inside 
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Discussion 

 The reported Bayesian well-conditioning criteria over 
monotonicity intervals of the integrand put on firm ground and 
complete similar empirical previously defined criteria. 

 We have shown that accurate computation of the involved 
divided differences can be done, provided we redefine them in 
terms of standard modified reduced abscissas. This result allows 
numerical definition to machine accuracy of the isolated 
integrand discontinuity points. 

 The quantitative criteria look different for the densely sampled, 
respectively sparsely sampled regions of quadrature knots for 
local quadrature rules spanned by orthogonal polynomials.  

 Numerical estimates of the derived bounds are in good 
agreement with the previously derived empirical values.  

 The set of reported Bayesian criteria exhausts all the cases 
concerning integrand conditioning over monotonicity intervals.  



Thank you for your attention ! 


