
Universitatea  “Ştefan cel Mare” Suceava 

Facultatea de Inginerie Electrică şi Ştiinţa Calculatoarelor 

Ioan Ungurean, Ionela Rusu, Stefan-Gheorghe Pentiuc 
ioanu@eed.usv.ro, ionelar@eed.usv.ro, pentiuc@eed.usv.ro 

 

mailto:ioanu@eed.usv.ro
mailto:ionelar@eed.usv.ro
mailto:pentiuc@eed.usv.ro


 

1. INTRODUCTION 
 

2. USV-ROADRUNNER SUPERCOMPUTER 
 

3. DETERMINATION OF A MODEL FOR A TYPE-3 
CLASSIFIER 
 

4. PARALLELIZATION OF THE ALGORITHM FOR USV-
ROADRUNNER SUPERCOMPUTER 
 

5. THE ACTIVATION OF THE SPE CORES 
 

6. EXPERIMENTAL RESULTS  
 

7. CONCLUSIONS  



 

 Cell Broadband Engine 
Architecture was 
developed by IBM for 
Cell B.E. processor from 
PlayStation 3 game 
console.  
 

 This architecture was 
optimized for math 
intensive computing. 

 

 



 

 In December 2009, the HPC lab 
was completed with an IBM 
Roadrunner-type cluster, with a 
peak performance of 9.98 TFlops. 
 

 Based on Cell BE processors 
 

 Energy efficient (~337MFlops/watt) 
 

 Architecture optimized for 
intensive arithmetic computations 



 

 48 processing QS22 dual-CPU blades 
with Cell BE processors: 

◦ 2 IBM PowerXCell 8i CPUs (3.2 GHz) 

◦ 8 GB RAM per blade 

◦ 8 GB modular SSD 

◦ Gigabit Ethernet interface for 
administration 

◦ Infiniband 4xDDR interface for data 
transfer 

◦ GPFS access on the storage system 
for concurrent parallel access of 
files 

 



 The applications development for USV-RoadRunner 
system must take into account that there are two levels 
of parallelization. 

◦ On the first level, the distribution of computation tasks to PowerXCell 8i 
processors (the core PPE) is performed. 

◦ On the second level, the distribution of computation tasks to SPE cores is 
performed. 



 The CLASS algorithm is part of the supervised 
classification algorithms.  

 

 This means that the algorithm needs a training set, which 
is used for classification of patterns from the input set.  



 Algorithm 1.  Sequential algorithm. 

 *) Read the input data from a file. 

 *) Allocate memory for the A(m x (p+1)) matrix. 

 *) Allocate memory for the miu(m) vector. 

 *) Initialize with 0 the elements of matrix A. 

 for i=1,n do 

      for j=1,p do  

         A[CLASA[i]][j] += ANTREN[i][j] 

     end for 

 miu[CLASA[i]] += F[i] 

 end for 

 for l=1,M do 

    for j=1,p do 

        A[l][j] /= miu[l]; 

  A[l][p+1] +=A[l][j]*A[l][j]*(-1/2) 

    end for 

 end for 

 end. 

 



Algorithm 2. Parallelization of the algorithm 
for USV-RoadRunner supercomputer. 

Read the input data from a file. 

*) Allocate memory for the A(m x (p+1)) matrix. 

*) Allocate memory for the miu(m) vector. 

*) Initialize with 0 the elements of matrix A. 

*) Distribute the set of training patterns to the MPI 

process (nLolcal – the number of patterns 

assigned to the current MPI process). 

for i=1,nLocal do 

      for j=1,p do  

          A[CLASA[i]][j] += ANTREN[i][j] 

      end for 

       miu[CLASA[i]] += F[i] 

end for 

*) Use MPI_AllReduce() function in order to 

update the matrix A and vector miu on all MPI 

processes from the system. 

 

for l=1,M do 

      for j=1,p do 

                A[l][j] /= miu[l]; 

   A[l][p+1] +=A[l][j]*A[l][j]*(-1/2) 

       end for 

end for 

*) Use MPI_AllReduce() function in order 

to update the matrix A on all MPI 

processes from the system. 

end. 

 



Algorithm 3.  The activation of the SPE 
cores. 

*) Read the input data from a file. 

*) Allocate memory for the A(m x (p+1)) matrix. 

*) Allocate memory for the miu(m) vector. 

*) Initialize with 0 the elements of matrix A. 

*) Distribute the set of training patterns to the 

MPI process (nLocal– the number of patterns 

assigned to the current MPI process). 

Distribute the local set of training patterns to the 

SPE cores 

*) Send a signal to the SPE cores in order to 

begin the compute of matrix A based on 

assigned patterns. 

*) Wait for a mailbox from each SPE core, which 

signals the end of assigned jobs.   

 

 

for l=1,M do 

      for j=1,p do 

                  A[l][j] /= miu[l]; 

     A[l][p+1] +=A[l][j]*A[l][j]*(-1/2) 

        end for 

end for 

*) Use MPI_AllReduce() function in order 

to update the matrix A and vector miu on 

all MPI processes from the system. 

end. 

 



 

 In order to test the performance of this 
algorithm, we have chosen the p53 mutants 
dataset.  
 

 This dataset represents the models of the mutant 
p53 protein, models that can be used to predict 
the transcriptional activity of p53 protein (cancer 
diagnosis).  
 

 This data set has 16,722 patterns, each pattern 
with 5409 features.  



 In first step, the performances were measured by 
execution of the algorithm on one processor 
PowerXCell 8i, without use of the SPE cores.  

 Next, the number of PowerXCell 8i processor was 
doubled until the maximum number (96) (see Fig. 2). 

 

Figure 2. The performan-

ces obtained without use 

of SPE cores.  



 Fig 3 presents the total execution time and 
communication time for the case in which all 8 SPE 
cores on each PowerXCell 8i processor are used. 

 

Figure 3. The perfor-

mances obtained 

with use of SPE 

cores.  



 Fig 4 presents the speeds-up obtained by increasing 
the number of PowerXCell 8i processors with and 
without use of the SPE cores.  

 Speeds-ups are reported to the algorithm execution 
on a PowerXCell 8i processor without use of the SPE 
cores.  

 

 

Figure 4. Graphical 

representation of 

speeds-up obtained.  



 

 

 In this paper, we present the methods used in order 
to design, program, and analyze a multilevel parallel 
variant so as to determine a model for a type-3 
classifier.  

 

 A comparison was performed between the sequential 
variant and parallelized variant was carried out on a 
single level, as well as for the parallelized variant on 
two levels.  

 



 

 

 The performances achieved by algorithm execution 
were analyzed for the USV-RoadRunner 
supercomputer. For the moment, we obtain a speed-
up of 28.   

 

 Algorithm can be further optimized by using the 
SIMD facilities held of SPE cores. Using these 
facilities, the speedup can increase with an order size 
(x10). 



Universitatea  “Ştefan cel Mare” Suceava 

Facultatea de Inginerie Electrică şi Ştiinţa Calculatoarelor 


