1/33

# Modeling Impurity Migration in Multilayer Systems Using Parallelization

### Călin Ioan Hojbotă, Valer Toșa

Departament of Molecular and Biomolecular Physics National Institute for Research and Development of Isotopic and Molecular Technologies Cluj-Napoca, Romania

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Table of Co  | ontents            |                |         |            |

1 Introduction

2 Mathematical Model

## Implementation





| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Introduction | า                  |                |         |            |

• In science, diffusion appears in many systems (electrons, molecules, photons, etc.)

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Introduction | ı                  |                |         |            |

- In science, diffusion appears in many systems (electrons, molecules, photons, etc.)
- A chemical agent can migrate from the packaging foil into the product which it wraps

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Introduction | n                  |                |         |            |

- In science, diffusion appears in many systems (electrons, molecules, photons, etc.)
- A chemical agent can migrate from the packaging foil into the product which it wraps
- In EU and USA, models help decision-making regarding safe packaging

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Introduction | n                  |                |         |            |

- In science, diffusion appears in many systems (electrons, molecules, photons, etc.)
- A chemical agent can migrate from the packaging foil into the product which it wraps
- In EU and USA, models help decision-making regarding safe packaging
- We present migration of chemical impurities in a multilayer system

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Introductio  | n                  |                |         |            |
|              |                    |                |         |            |

- In science, diffusion appears in many systems (electrons, molecules, photons, etc.)
- A chemical agent can migrate from the packaging foil into the product which it wraps
- In EU and USA, models help decision-making regarding safe packaging
- We present migration of chemical impurities in a multilayer system
- We try to improve execution times when the simulation is repeated a large number of times

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathem       | natical model      |                |         |            |
|              |                    |                |         |            |

• Fick's Law of Diffusion:

$$\frac{\partial c}{\partial t} = D\nabla \cdot (\nabla c)$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathematic   | cal model          |                |         |            |

• Fick's Law of Diffusion:

$$\frac{\partial c}{\partial t} = D \nabla \cdot (\nabla c)$$

• Initial concentration :

$$c(x,0)=c_0(x)$$

Boundary conditions:

$$\left.\frac{\partial c}{\partial x}\right|_{x=0} = 0$$

Interlayer condition (partition coefficient):

$$\frac{c_A(x=L_A)}{c_B(x=L_A)}=K_{AB}$$

9/33

イロン イロン イヨン イヨン 三日

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathem       | atical model       |                |         |            |

• Finite Differences equation (Crank-Nicolson):

$$\frac{c_i^{n+1} - c_i^n}{\delta t} = D\left[\frac{c_{i-1}^{n+1} - 2c_i^{n+1} + c_{i+1}^{n+1}}{2\delta x^2} + \frac{c_{i-1}^n - 2c_i^n + c_i^n}{2\delta x^2}\right]$$

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathem       | natical model      |                |         |            |

• Finite Differences equation (Crank-Nicolson):

$$\frac{c_i^{n+1} - c_i^n}{\delta t} = D\left[\frac{c_{i-1}^{n+1} - 2c_i^{n+1} + c_{i+1}^{n+1}}{2\delta x^2} + \frac{c_{i-1}^n - 2c_i^n + c_i^n}{2\delta x^2}\right]$$

• Fictitious point method



| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathem       | natical model      |                |         |            |

• Finite Differences equation (Crank-Nicolson):

$$\frac{c_i^{n+1} - c_i^n}{\delta t} = D\left[\frac{c_{i-1}^{n+1} - 2c_i^{n+1} + c_{i+1}^{n+1}}{2\delta x^2} + \frac{c_{i-1}^n - 2c_i^n + c_i^n}{2\delta x^2}\right]$$

• Fictitious point method



• We end up solving a system of equations

$$\mathbf{Ac}^{\mathbf{n+1}} = \mathbf{Bc}^{\mathbf{n}}$$

・ロト ・回ト ・ヨト ・ヨト

3

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathema      | atical model       |                |         |            |

Figure 1: Planar configuration : cardboard-glue-cardboard.



| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathema      | tical model        |                |         |            |

Figure 2: Cylindrical configuration.



| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Mathemat     | cical model        |                |         |            |

Figure 3: Spherical configuration.



| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Impleme      | ntation            |                |         |            |

# • The program will be part of a large Monte Carlo simulation

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ition              |                |         |            |

- The program will be part of a large Monte Carlo simulation
- The numerical routine was implemented in FORTRAN

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | tion               |                |         |            |

- The program will be part of a large Monte Carlo simulation
- The numerical routine was implemented in FORTRAN
- It will be called from the main application as a library file (\*.dll)

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ition              |                |         |            |

- The program will be part of a large Monte Carlo simulation
- The numerical routine was implemented in FORTRAN
- It will be called from the main application as a library file (\*.dll)
- $\bullet\,$  Main program written in C/C++

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | tion               |                |         |            |

## • We tried to improve execution times using OpenMP

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ition              |                |         |            |

- We tried to improve execution times using OpenMP
- Parallelization was implemented in the main application

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | tion               |                |         |            |

- We tried to improve execution times using OpenMP
- Parallelization was implemented in the main application
- Data is passed and read using arrays

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Impleme      | entation           |                |         |            |

- We tried to improve execution times using OpenMP
- Parallelization was implemented in the main application
- Data is passed and read using arrays
- We must have a way to store large amounts of data taking into account the number of threads

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Impleme      | entation           |                |         |            |

- We tried to improve execution times using OpenMP
- Parallelization was implemented in the main application
- Data is passed and read using arrays
- We must have a way to store large amounts of data taking into account the number of threads
- Race conditions must be avoided

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ition              |                |         |            |

• 1. check the maximum number of threads

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ition              |                |         |            |

- 1. check the maximum number of threads
- 2. dynamically create an array of file pointers

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | tion               |                |         |            |

- 1. check the maximum number of threads
- 2. dynamically create an array of file pointers
- 3. on each thread, write the results to its corresponding file

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Implementa   | ation              |                |         |            |

- 1. check the maximum number of threads
- 2. dynamically create an array of file pointers
- 3. on each thread, write the results to its corresponding file
- After the computation is performed, assemble them into a single data file

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Results      |                    |                |         |            |

## • Intel i3 CPU, (M 350, 2.27 GHz) - 2 physical cores

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Results      |                    |                |         |            |

- Intel i3 CPU, (M 350, 2.27 GHz) 2 physical cores
- Simulated for 1000 runs

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Results      |                    |                |         |            |

- Intel i3 CPU, (M 350, 2.27 GHz) 2 physical cores
- Simulated for 1000 runs

• 
$$S_p = \frac{T_s}{T_p} = 2.4$$
  
 $||$  With OpenMP( $T_p$ ) | Without OpenMP( $T_s$ ) |  
Exec. time(s) || 5.2 | 12.5

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
| Discussion   |                    |                |         |            |

We presented a model suitable for modeling migration The model was applied for a planar configuration can be (and was) extended for other geometries (cylindrical, spherical) Parallelization improved the execution times in shared memory systems

Can be further extended to distributed memory systems (MPI) The work was performed within the EU FP7 Project FACET (Flavorings Additives and food Contact materials Exposure Task)

| Introduction | Mathematical Model | Implementation | Results | Discussion |
|--------------|--------------------|----------------|---------|------------|
|              |                    |                |         |            |
|              |                    |                |         |            |

Thank You !

<ロ><合><合><合><合><</td>33/33