
Introduction Mathematical Model Implementation Results Discussion

Modeling Impurity Migration in Multilayer
Systems Using Parallelization

Călin Ioan Hojbotă, Valer Toşa

Departament of Molecular and Biomolecular Physics
National Institute for Research and Development of Isotopic and Molecular

Technologies
Cluj-Napoca, Romania

1 / 33



Introduction Mathematical Model Implementation Results Discussion

Table of Contents

1 Introduction

2 Mathematical Model

3 Implementation

4 Results

5 Discussion

2 / 33



Introduction Mathematical Model Implementation Results Discussion

Introduction

In science, diffusion appears in many systems (electrons,
molecules, photons, etc.)

A chemical agent can migrate from the packaging foil into the
product which it wraps

In EU and USA, models help decision-making regarding safe
packaging

We present migration of chemical impurities in a multilayer
system

We try to improve execution times when the simulation is
repeated a large number of times

3 / 33



Introduction Mathematical Model Implementation Results Discussion

Introduction

In science, diffusion appears in many systems (electrons,
molecules, photons, etc.)

A chemical agent can migrate from the packaging foil into the
product which it wraps

In EU and USA, models help decision-making regarding safe
packaging

We present migration of chemical impurities in a multilayer
system

We try to improve execution times when the simulation is
repeated a large number of times

4 / 33



Introduction Mathematical Model Implementation Results Discussion

Introduction

In science, diffusion appears in many systems (electrons,
molecules, photons, etc.)

A chemical agent can migrate from the packaging foil into the
product which it wraps

In EU and USA, models help decision-making regarding safe
packaging

We present migration of chemical impurities in a multilayer
system

We try to improve execution times when the simulation is
repeated a large number of times

5 / 33



Introduction Mathematical Model Implementation Results Discussion

Introduction

In science, diffusion appears in many systems (electrons,
molecules, photons, etc.)

A chemical agent can migrate from the packaging foil into the
product which it wraps

In EU and USA, models help decision-making regarding safe
packaging

We present migration of chemical impurities in a multilayer
system

We try to improve execution times when the simulation is
repeated a large number of times

6 / 33



Introduction Mathematical Model Implementation Results Discussion

Introduction

In science, diffusion appears in many systems (electrons,
molecules, photons, etc.)

A chemical agent can migrate from the packaging foil into the
product which it wraps

In EU and USA, models help decision-making regarding safe
packaging

We present migration of chemical impurities in a multilayer
system

We try to improve execution times when the simulation is
repeated a large number of times

7 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Fick’s Law of Diffusion:

∂c

∂t
= D∇ · (∇c)

Initial concentration :

c(x , 0) = c0(x)

Boundary conditions:

∂c

∂x

∣∣∣∣
x=0

= 0

Interlayer condition (partition coefficient):

cA(x = LA)

cB(x = LA)
= KAB

8 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Fick’s Law of Diffusion:

∂c

∂t
= D∇ · (∇c)

Initial concentration :

c(x , 0) = c0(x)

Boundary conditions:

∂c

∂x

∣∣∣∣
x=0

= 0

Interlayer condition (partition coefficient):

cA(x = LA)

cB(x = LA)
= KAB

9 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Finite Differences equation (Crank-Nicolson):

cn+1
i − cni
δt

= D

[
cn+1
i−1 − 2cn+1

i + cn+1
i+1

2δx2
+

cni−1 − 2cni + cni
2δx2

]

Fictitious point method

We end up solving a system of equations

Acn+1 = Bcn

10 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Finite Differences equation (Crank-Nicolson):

cn+1
i − cni
δt

= D

[
cn+1
i−1 − 2cn+1

i + cn+1
i+1

2δx2
+

cni−1 − 2cni + cni
2δx2

]
Fictitious point method

We end up solving a system of equations

Acn+1 = Bcn

11 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Finite Differences equation (Crank-Nicolson):

cn+1
i − cni
δt

= D

[
cn+1
i−1 − 2cn+1

i + cn+1
i+1

2δx2
+

cni−1 − 2cni + cni
2δx2

]
Fictitious point method

We end up solving a system of equations

Acn+1 = Bcn

12 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Figure 1: Planar configuration : cardboard-glue-cardboard.

13 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Figure 2: Cylindrical configuration.

14 / 33



Introduction Mathematical Model Implementation Results Discussion

Mathematical model

Figure 3: Spherical configuration.

15 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

The program will be part of a large Monte Carlo simulation

The numerical routine was implemented in FORTRAN

It will be called from the main application as a library file
(*.dll)

Main program written in C/C++

16 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

The program will be part of a large Monte Carlo simulation

The numerical routine was implemented in FORTRAN

It will be called from the main application as a library file
(*.dll)

Main program written in C/C++

17 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

The program will be part of a large Monte Carlo simulation

The numerical routine was implemented in FORTRAN

It will be called from the main application as a library file
(*.dll)

Main program written in C/C++

18 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

The program will be part of a large Monte Carlo simulation

The numerical routine was implemented in FORTRAN

It will be called from the main application as a library file
(*.dll)

Main program written in C/C++

19 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

We tried to improve execution times using OpenMP

Parallelization was implemented in the main application

Data is passed and read using arrays

We must have a way to store large amounts of data taking
into account the number of threads

Race conditions must be avoided

20 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

We tried to improve execution times using OpenMP

Parallelization was implemented in the main application

Data is passed and read using arrays

We must have a way to store large amounts of data taking
into account the number of threads

Race conditions must be avoided

21 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

We tried to improve execution times using OpenMP

Parallelization was implemented in the main application

Data is passed and read using arrays

We must have a way to store large amounts of data taking
into account the number of threads

Race conditions must be avoided

22 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

We tried to improve execution times using OpenMP

Parallelization was implemented in the main application

Data is passed and read using arrays

We must have a way to store large amounts of data taking
into account the number of threads

Race conditions must be avoided

23 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

We tried to improve execution times using OpenMP

Parallelization was implemented in the main application

Data is passed and read using arrays

We must have a way to store large amounts of data taking
into account the number of threads

Race conditions must be avoided

24 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

1. check the maximum number of threads

2. dynamically create an array of file pointers

3. on each thread, write the results to its corresponding file

After the computation is performed, assemble them into a
single data file

25 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

1. check the maximum number of threads

2. dynamically create an array of file pointers

3. on each thread, write the results to its corresponding file

After the computation is performed, assemble them into a
single data file

26 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

1. check the maximum number of threads

2. dynamically create an array of file pointers

3. on each thread, write the results to its corresponding file

After the computation is performed, assemble them into a
single data file

27 / 33



Introduction Mathematical Model Implementation Results Discussion

Implementation

1. check the maximum number of threads

2. dynamically create an array of file pointers

3. on each thread, write the results to its corresponding file

After the computation is performed, assemble them into a
single data file

28 / 33



Introduction Mathematical Model Implementation Results Discussion

Results

Intel i3 CPU, (M 350, 2.27 GHz) - 2 physical cores

Simulated for 1000 runs

Sp = Ts
Tp

= 2.4

With OpenMP(Tp) Without OpenMP(Ts)

Exec. time(s) 5.2 12.5

29 / 33



Introduction Mathematical Model Implementation Results Discussion

Results

Intel i3 CPU, (M 350, 2.27 GHz) - 2 physical cores

Simulated for 1000 runs

Sp = Ts
Tp

= 2.4

With OpenMP(Tp) Without OpenMP(Ts)

Exec. time(s) 5.2 12.5

30 / 33



Introduction Mathematical Model Implementation Results Discussion

Results

Intel i3 CPU, (M 350, 2.27 GHz) - 2 physical cores

Simulated for 1000 runs

Sp = Ts
Tp

= 2.4

With OpenMP(Tp) Without OpenMP(Ts)

Exec. time(s) 5.2 12.5

31 / 33



Introduction Mathematical Model Implementation Results Discussion

Discussion

We presented a model suitable for modeling migration
The model was applied for a planar configuration can be (and was)
extended for other geometries (cylindrical, spherical)
Parallelization improved the execution times in shared memory
systems
Can be further extended to distributed memory systems (MPI)
The work was performed within the EU FP7 Project FACET
(Flavorings Additives and food Contact materials Exposure Task)

32 / 33



Introduction Mathematical Model Implementation Results Discussion

Thank You !

33 / 33


	Introduction
	Mathematical Model
	Implementation
	Results
	Discussion

