

National Institute for Research and Development of Isotopic and Molecular Technologies

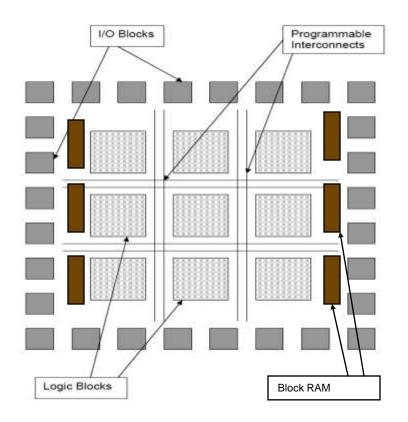
FPGA Based Hardware Architectures for High Performance Computing Applications Authors Bogdan BELEAN | Sergiu POGACIAN | Adrian BOT

5th Romania Tier 2 Federation Grid, Cloud & High Performance Computing ScienceDr. Ing. Bogdan Ioan BELEAN

FPGA Based Hardware Architectures for High Performance Computing Applications

Content

- A FPGA Technology Description
- **B** cDNA Microarray image processing
- С Low-density Parity Check Codes (Error Correction Codes)


FPGA Technology Description

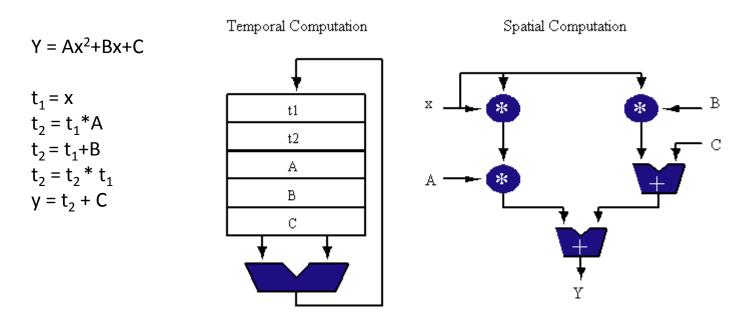
FPGA

Α

Field Programmable Gate Arrays = digital logic chips containing:

- Configurable Logic Blocks (CLB)
 - LUT (Look Up Table)
 - Multiplexors
 - Flip-Flops
- Programmable interconnects
 - & switch matrices
- I/O Bocks (programmable)
- Block RAMs
- Processors (Power PC)
- Clock

FPGA Technology Description

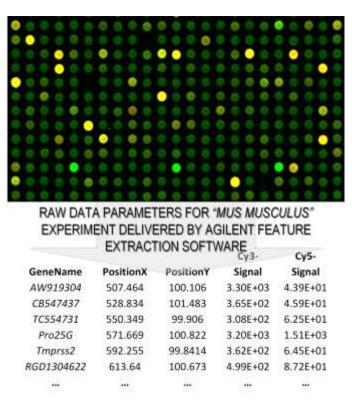

Α

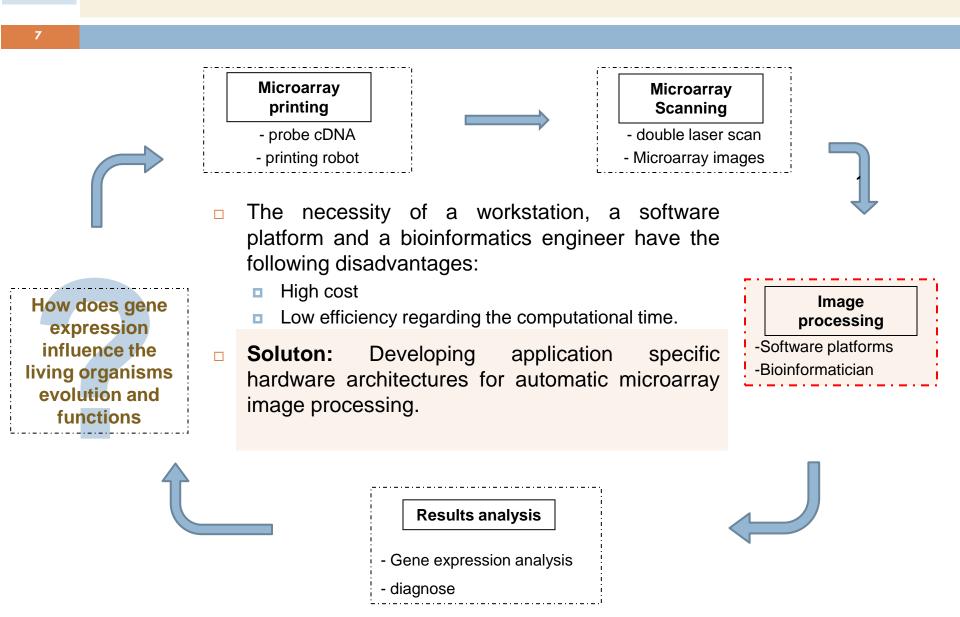
Major advantage

Spatial vs. temporal computation

- **temporal** (serial) **computing** – only one computation can proceed at a time. CPU has to wait while program code or data is fetched.

- **spatial** is parallel **computing** – one set of gates is processing on part of the algorithm while other gates are doing other tasks.


Microarray experiment:


- Prelevarea probelor de cDNA
- Probes labeling (fluorescent markers Cy3, Cy5)
- Hybridization of cDNA probes on microarray glass slide
- Microarray scanning
- Data analysis

6/

- Processing Platforms: Agilent Feature Extraction Software, Agilent GeneSpring
- □ GEO database (Gene Expression Omnibus) images and results
 - Preprocessing
 - Noise removal
 - Image Enhancement
 - Addressing
 - Segmentation
 - Intensity extraction

В

8

Β

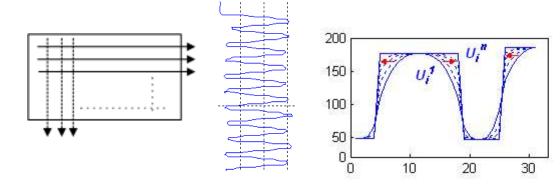
Image processing methods for automatic microarray image processing

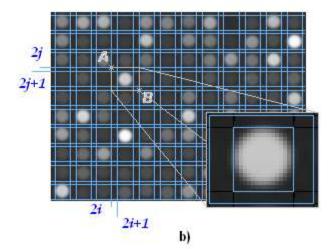
- Preprocessing
 - Enhancing weakly expressed spots

$$I_L(x, y) = \frac{\ln(I_0(x, y) + 1)}{\ln 2^n} \cdot 2^n \qquad I_A(x, y) = \begin{cases} \frac{k+1}{2^n} \\ \frac{2^n \operatorname{atgh}(\frac{I(x, y) - k}{2^n})}{\operatorname{atgh}(\frac{2^n - 1}{2^n})}, I(x, y) > k; \end{cases}$$

- Adressing
 - Shock filters
 - **IN** : Image profiles

$$VP(x) = \frac{1}{Y} \sum_{y=0}^{Y-1} I(x, y)$$
$$HP(y) = \frac{1}{X} \sum_{x=0}^{X-1} I(x, y)$$

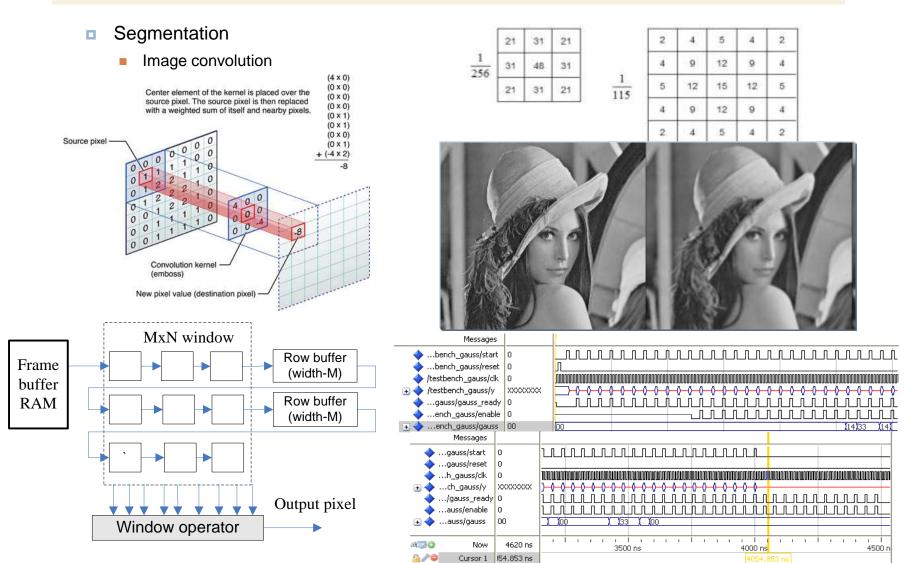

Continuous model


$$U_t = -sign(U_{xx}) |U_x|$$

Discrete model

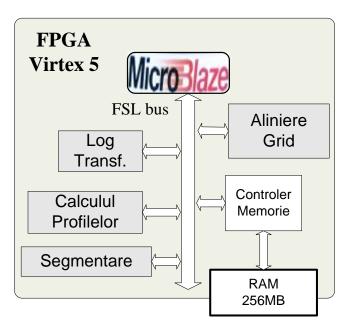
 $\left[\frac{2^n \operatorname{atgh}(\frac{I(x, y) - k}{k+1})}{\operatorname{atgh}(\frac{-k}{k+1})}, I(x, y) <= k;\right]$

$$U_{t} = -sign(U_{xx})|U_{x}|$$
$$U_{i}^{n+1} = U_{i}^{n} - |DU_{i}^{n}| \cdot sign(D^{2}U_{i}^{n})$$



9

Β

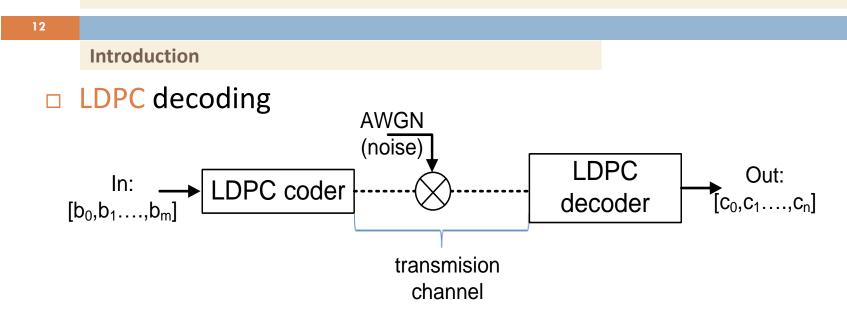

Image processing methods for automatic microarray image processing



10

В

Overall results


Resurse hardware utilizate					
	Transformare	Calcul de profile și adresare	Segmentare	Total	Disponibil
	Logaritmica	(filtre de soc)			
Nr. slice reg.	18	355	1068	1441	69120
Nr. slice LUT	-	8525	1736	10261	69120
Nr. Block RAM	-	4	2	6	148
Nr. BUFG	1	-	1	2	32
Nr. DSP48E	4	2	-	6	64

11

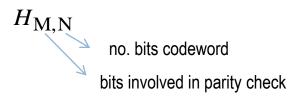
Introduction

LDPC

- Introduced by Galager in 1962
- LDPC codes offer remarkable performances falling only 0.04 dB short of the Shannon theoretical limit
- insufficient computational power available for the decoding process
- FPGA/ASIC technologies and digital signal processors, LDPC codes are considered a significant breakthrough in the world of digital communications
- Standards:
 - WiMAX for wireless networks
 - DVB-S2 for satellite broadcasting services use LDPC codes

- iterative decoding
- error correction capacity
- computationally expensive

13


Introduction

LDPC codes

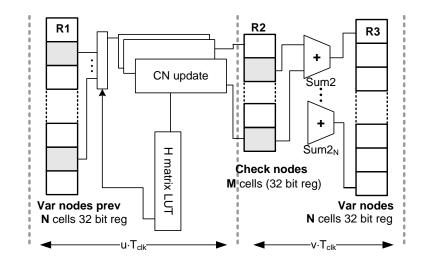
- Inter block codes (m,n) where m = information bits and n = total no. of bits in a codeword
- k = control bits added after encoding

n = m + k

- encoding relation: $[i] \cdot G_{\underline{mxn}} = [c]$ Generator matrix
- **decoding** based on parity matrix $H_{M,N}$ sparse matrix
 - Hard decoding
 - Soft decoding Message passing algorithm (probability propagation)

14

Introduction


- **Standards:**
 - WiMAX 576 x 288
 - DVB-S2 1022 x 8176

Implementation approach	Code length (standard)	Throughput	
1. GPU	10 000 bits	100Mbps	
1. FPGA/ASIC	2048b	240 Mbps	
	672b (~WiMAX)	822 Mbps	
	64800b (DVB-S2)	520 Mbps	
1. ASIP	1620b	300 Mbps	
	1620b (WiMAX)	100 Mbps	
	2304b (WiMAX)	62 Mbps	

15

С

FPGA based hardware architectures

the total delay path for updating the var nodes (R3) register values in case of 1 decoding iteration is

T = u+v (clock cycles)

represents the number of 1 values within the H lines

the number of clock cycles necessary for *Sum2*^{*i*} addition, respectively

T = 10 in case of WiMAX standard

WiMAX standard

M = 576 codeword length $N_{iterations} = 10$ the number of iterations for the decoding process $F_{clk} = 350 MHz$ the frequency of the FPGA based decoder **Decoder throughput estimation**

$$Throughput = \frac{M \cdot f_{clk}}{N_{iterations} T} \approx 2GHz$$

Conclusions

- Two applications were presented
 - Microarray image processing embedded system
 - LDPC decoder implementation
- FPGA Technology
 - Iterative algorithms
 - Increased data content
 - Real time system
 - Efficient implementations for high performance computing applications