Eagle Eye – Feature Extraction from Satellite Images

Razvan Dobre University Politehnica of Bucharest

Topics

- Who am I?
- Eagle eye
 - Introduction
 - Architecture
 - Implementation
 - Results
 - Conclusions

Who am I

PhD Student at the Faculty of Automatic Control and Computers, UPB

Who am I

- My domains of interests are:
 - Networking and cluster management
 - Building a HPC cluster from ground up
 - Virtualization technologies
 - Cloud computing over normal batch-system
 - Tuning
 - "under construction"

Eagle Eye - Introduction

- Our application partially funded by the HP-SEE FP7 project
- Goals
 - Extract information from satellite images
 - Roads, forests, infields, etc
 - Reconstruct a 3D map out of 2D photo
 - Done for Romania

Eagle Eye - Introduction

Input

- High resolution material
 - 1px per square meter
 - Military maps, old ones
 - Satellite images
- Output
 - 3D map
 - Road map
 - Corn fields, forests distribution

Eagle Eye – Algorithms

Original

- Hough Transform
 - a technique that locates shapes in images
 - Lines, circles, ellipses

Drum final

Eagle Eye – Algorithms

- Edge detection Sobel
 - determine the sudden changes in brightness, texture etc. that the human eye identifies as a border of a given area

Eagle Eye – Infrastructure

- Hybrid implementation
 - X86 nodes
 - 2 * 4 core Intel Xeon E5405 2.00GHz
 - 16GB ram
 - 1 Gigabit interconect
 - Cell BE i8 nodes
 - 2 * power + 2 * 8 SPE (SIMD)
 - 8GB ram
 - 1 Gigabit interconect

EagleEye – Infrastructure

- Why hybrid?
 - Specialized processing units for a specific set of applications
 - Image processing applying same operations on a set of pixel
 - Accelerators (Cell Be SPE core) good for math
 - X86 and power cores good for branch prediction
 - TCP/IP communication between nodes (dedicated protocol)

EagleEye – Architecture

- Eagle Eye is a framework that consists of:
 - Recognition engine
 - Map server
 - Control Module
 - Scheduler

* future work

Eagle Eye – Architecture

- Processing steps
 - JPEG decompression
 - Grayscale conversion
 - Roads extraction
 - Edge detection (Sobel)
 - Hough transformation
 - Finding roads
 - Infields area and forests
 - Computing co-occurrence matrix and quantifiers
 - Classifications

EagleEye – Results

► X86-only uses Accelerated, 16 SPU 67 17 **Openmp 8 threads** 730 edge detection Accelerated, 1 SPU 213 grayscale conversion Accelerated uses 140 X86-only 170 16 SPUs 500 1000 0

EagleEye – Conclusions

Pro

- Satisfying performance of the application
- Useful output

Cons

- TCP/IP communication is a bottleneck in both latency and bandwidth
 - Use infiniband (rdma)

Thank you

