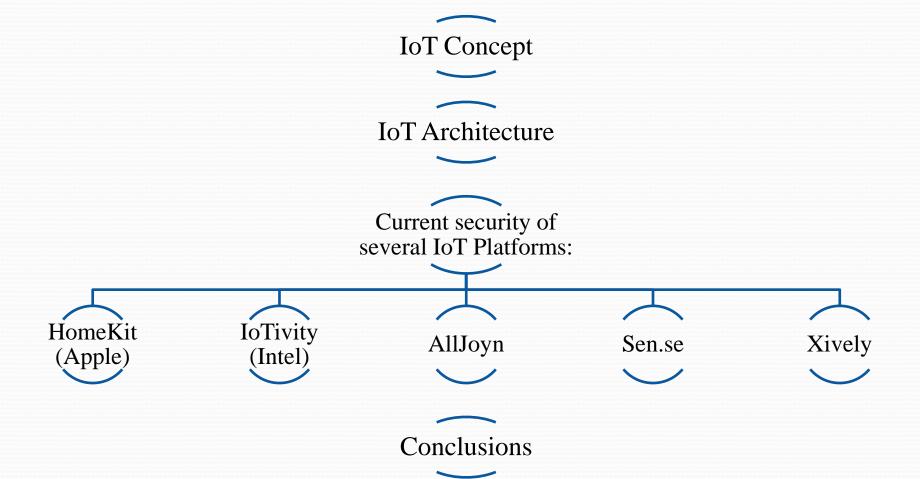


University "Politehnica" of Bucharest Doctoral School of Electronics, Telecommunications and Information Technology

RO-LCG 2015 Conference

Analysis of the Security Solutions Implemented in Current Internet of Things Platforms


Ştefan-Ciprian ARSENI Octavian FRATU Alexandru VULPE Simona HALUNGA George SUCIU

Agenda

Internet of Things - concept

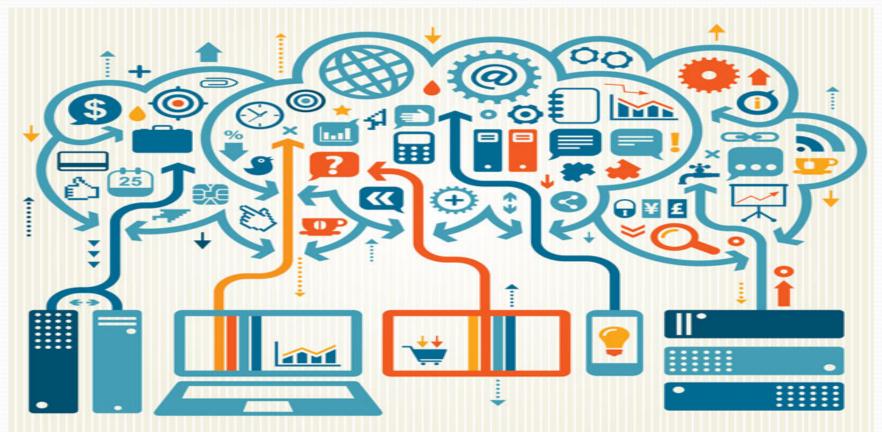
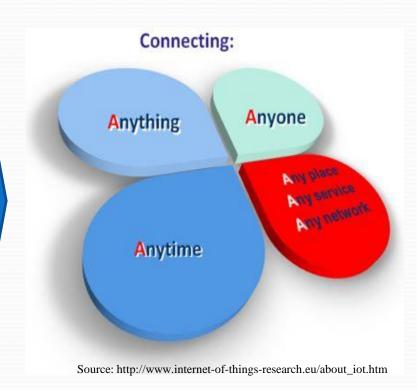


Image source: http://www.rfcode.com/data-driven-data-center/bid/351906/An-Internet-of-Things-Future-is-Already-Here-What-Does-it-Mean

Technology-driven society

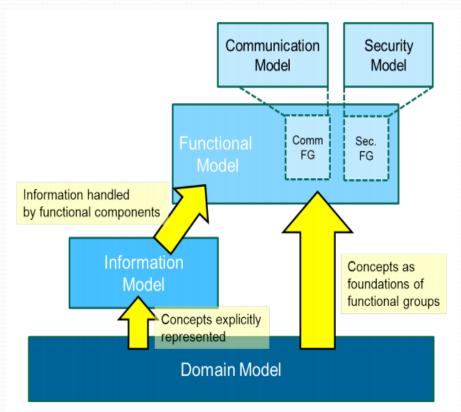
Interconnected world



Internet of Things - definition

Source: ITU, adapted from Nomura Research Institute.

Internet of Things - architecture so-etil-Bucures


Domain Model

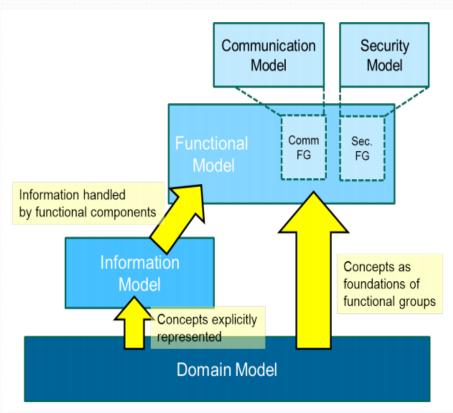
arap Gerrarearrarea

1818

- → Implements IoT concepts
- → Creates the connections between concepts
- Information Model
 - → Defines the data structure

 (attributes, relations)

Source: Deliverable D1.3 of the project "Internet of Things – Architecture (IoT-A)", available at: http://www.iot-a.eu/public/public-documents/documents-1

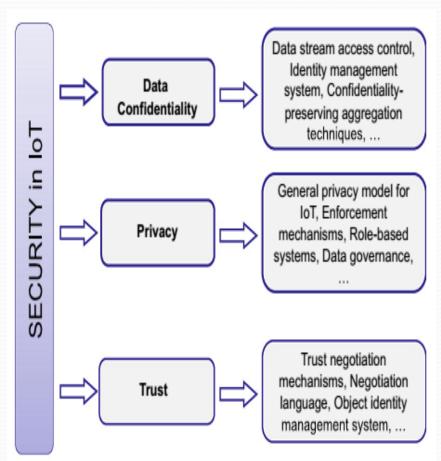

Internet of Things - architecture SD-ETTI-BUCUREST

Functional Model

OLITEHN,

1818

- → Functional Groups
- → Communication Model
- → Security Model



Source: Deliverable D1.3 of the project "Internet of Things – Architecture (IoT-A)", available at: http://www.iot-a.eu/public/public-documents/documents-1

Internet of Things - security

Source: Deliverable D1.3 of the project "Internet of Things – Architecture (IoT-A)", available at: http://www.iot-a.eu/public/public-documents/documents-1

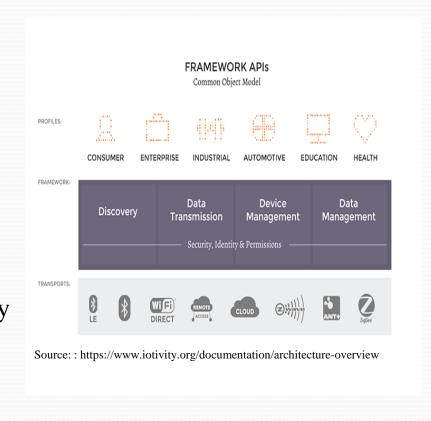
- Key factors:
 - Scalability and heterogeneousness of platforms
 - Data anonymity
- Security → critical step in the process of extending IoT on a large scale

- HomeKit -

- Designed by Apple, is like a new network protocol → allows users to control home appliances or access certain services
- Integration into a smartphone → diversity of applications.
- Allows grouping of resources based on common features.

- HomeKit (security) -

- Secure pairing of devices → ensures users they are the only persons controlling the device.
- Scene definition → control over multiple devices in the same area.
- Problem: weakness of the central controller.

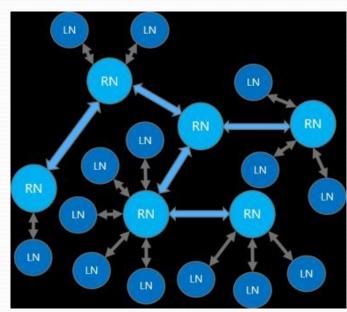


- IoTivity -

- Developed by Intel → currently
 proposed as a good architectural model
 by the Open Internet Consortium
- Implements only CoAP (Constrained Application Protocol) and not also HTTP, as application level protocol.
- Open-source project focused on security and simplicity → projected rapid development and adoption

- *IoTivity* (security) -

- Project under development → in current form it doesn't support complex security mechanisms
- Still, it has the possibility of integrating security methods through a variation of the "tinydtls" protocol, that needs to be activated before integration



- AllJoyn -

- First designed by Qualcomm, now driven by AllSeen Alliance (cross-industry consortium composed of more than 185 companies such as Microsoft, Sony or LG).
- AllJoyn devices describe their capabilities via service interfaces on a virtual bus.
- Two types of nodes:
 - Routing Nodes (RN) \rightarrow talk to any node
 - Leaf Nodes (LN) → talk to RN or LN through
 RN

- AllJoyn (security) -

- Similar to other frameworks → implements security at application level only, leaving the other levels unattended.
- At connection an authentication demand is triggered \rightarrow various options:
 - PIN codes;
 - PSK (Pre-Shared Cryptographic Key);
 - ECDSA (Elliptical Curve Digital Signature Algorithm).
- After a successful connection, the confidentiality and integrity of data transmitted is assured by integrating cryptographic algorithms (such as AES).

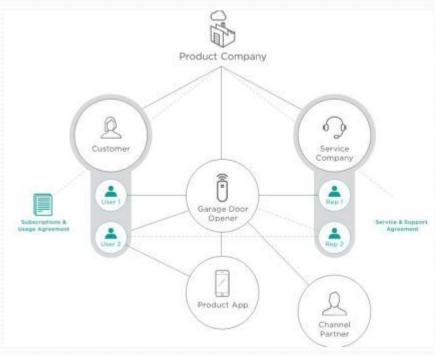
- Sen.se -

- First designed for industrial use, now available to regular users
- Infrastructure that continuously collects data received from connected devices.
- Designed to handle a huge amount of incoming data.
- Platform as a Service

- Sen.se (security) -

- Ensures only the authentication of devices.
- Does not protect the entire communication plan.
- Authentication of devices is being done based on a Sen.se key, that is specific and unique to each user.

Problem: Sen.se key is stored in online user profile → level of user
 data protection = level of IoT platform protection.


-Xively-

• IoT Platform focused mainly on companies and the assurance of

business processes.

 Offers users specialized processes for

- Managing and defining devices;
- Controlling the deployment lifecycle or products.

- Xively (security) -

- Ensures security by providing a private cloud infrastructure for the protection and availability of data.
- Even thought data exchanges are done via Web Services, the platform integrates the HTTPS protocol.
- For securing the device authentication process, there are used some API Keys, specific for each user.
- Allows a dynamic alteration of access rights over a resource.
- Problem: API Keys accessible in the user online profile.

Conclusions

- A good security implementation in a platform ensures that users would be fully satisfied with their experience and assured that all data exchanged between devices is secure.
- Due to the constraints of embedded devices/sensors, stronger security
 mechanisms are harder to be implemented → users need to choose between
 local IoT platforms or ones that are provided as a service.

Acknowledgment

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007-2013 of the Ministry of European Funds through the Financial Agreement POSDRU/187/1.5/S/155536.

University "Politehnica" of Bucharest Doctoral School of Electronics, Telecommunications and Information Technology

Analysis of the Security Solutions Implemented in Current Internet of Things Platforms

Thank You!

Ştefan-Ciprian ARSENI Octavian FRATU Alexandru VULPE Simona HALUNGA George SUCIU

University "Politehnica" of Bucharest Doctoral School of Electronics, Telecommunications and Information Technology

