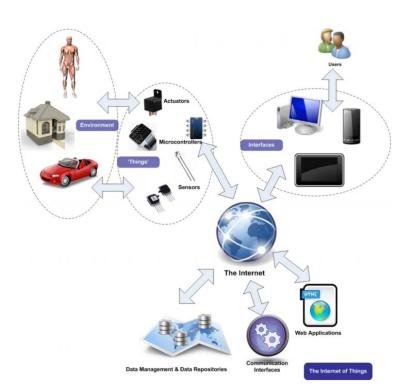
Intercloud platform for connecting and managing heterogeneous services with applications for e-health

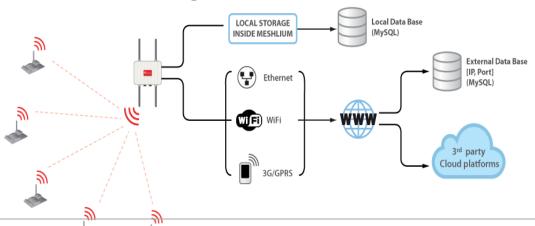
Alexandru Radu, Alexandru Costan, **Bogdan Iancu**, Vasile Dadarlat, Adrian Peculea

Outline


- Context
- Objectives
- Intercloud
- Experimental scenario
- Conclusions

Context

- Internet of Things (IoT)
 - environment for information
 - devices, sensors
 - applications
- Cloud computing technology
 - Sharing resources
 - High scalability
 - Elasticity
 - Pay as you go
 - Self-provisioning of resources


Source: Vouk, 2008

Context

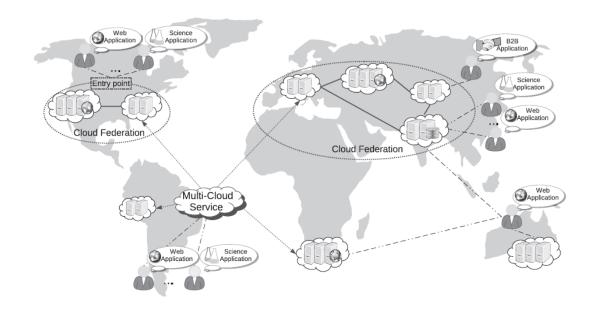
- Brained City project
 - QoS Sensitive Frameworks over Heterogeneous Networks
 - Self-Adaptive Bandwidth Reconfiguration & Admission Control
 - ClujIT Cluster POSCCE project: E-Health WSN Middleware
 - Libelium sensors
 - Medical devices
 - Interconnection of heterogeneous devices

Objectives

- Intercloud research
- Propose an architecture for interconnection of hybrid and heterogeneous services
 - aim: offering enhanced services & scalable and flexible infrastructure
- Experimental scenario
 - E-health prototype (software and hardware) for monitoring a basic medical device

Intercloud

- Intercloud (Bernstein, 2009).
 - every cloud has limited calculation resources in a certain geographical region
- Intercloud = interconnected cloud systems
 - key concept
 - a cloud by itself does not have infinite natural resources or stable geographic location.
 - improve efficiency and accuracy
 - real-time transmission of information



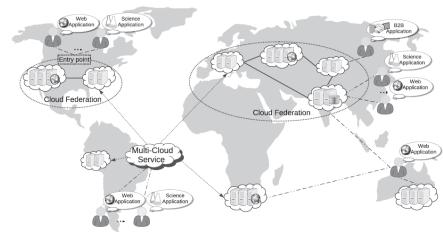
Intercloud

Cloud evolution

- cloud model
- guarantees QoS
- on-demand reassignment of resources and transfer of workload
- interworking cloud systems of different cloud providers
- SLA and use of standard interfaces.

Intercloud

Open interfaces

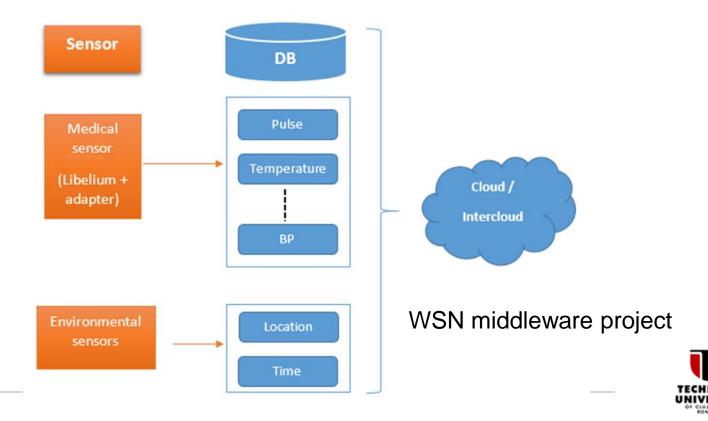

 administer the exchange and the portability of data between clouds.

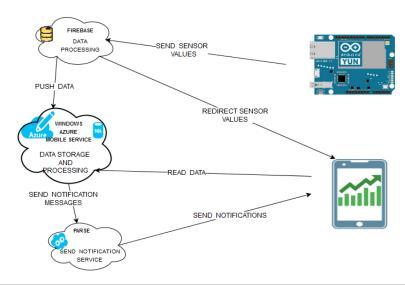
Challenge

communication between different clouds

Standardization:

- cloud interoperability;
- standardizing of APIs
- communication protocols
- IEEE P2302 Working Group

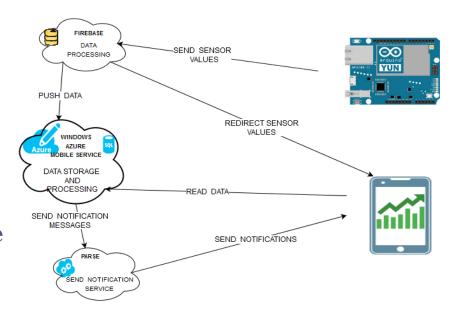



Experimental scenario

- Illustrate the interaction between cloud services
- E-health prototype

Experimental scenario

- Hardware and software components
 - Hardware: Arduino Yun OpenWRT, Pulse Sensor, mobile devices
 - Software: process and store data, business logic of events and relaying the notification messages



E-health prototype

Intercloud communication

- Firebase service:
 - Events management
 - Real time transmission to mobile devices
- Mobile Microsoft Azure Service
 - storing and processing big data
 - process data in order to determine notifying decisions
- Parse
 - specialized in notification messages mobile devices.

Conclusions

- Recent Intercloud initiatives
 - centered on resource management
- Paper's focus
 - design and development of a services centered architecture
 - showcasing a connectivity solution of heterogeneous cloud services
 - scalable architecture
 - services provided to clients in a transparent way
 - rapid deployment and integration

Conclusions

- Standards available for cloud technology
- Intercloud standardization
 - Early stages (IEEE P2302)
- Need for
 - open standards
 - strategies for binding different standards
 - verification sequences of the combined inter-operativity

Thank you!

Communications Networks and Protocols Research Lab http://cnp.utcluj.ro/

