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The goal

 Making high-performance, efficient computing 

more accessible for non-programmer scientists! 
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What is a DSL?

Types of (programming) languages:

 Generic Purpose Languages (GPLs)
Let you to do many thing with the same ease and expressivity

 Domain Specific Languages (DSLs)
Let you to do one thing with the maximum ease and expressivity

 DSLs describe schemes (programs, structures, etc.)

in they specific, native terms (jargon, symbols etc.)
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What is a DSL?

Some examples of DSLs:
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DSL Field, Domain

VHDL Hardware Description

TeX, LaTeX Document Layout

HTML Document markup

Postscript 2D imaging

SQL Databases

Make, Ninja Software building



What is an EDSL?

Developing and Learning a new language is hard!

Why not reuse existing languages?

 Embedded Domain Specific Languages
are not independent languages, they are formulated

inside an existing GPL, the host language.

 Easier to create

 Easier to learn for the users who know the host language.
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Why to use DSLs and EDSLs?

The Standard answers:     (taken from: Paul Hudak: DSLs)

 They are more concise

 Easier to write

 Easier to maintain

 Easier to reason about (debugging)

They can be written by non-programmers!
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http://haskell.cs.yale.edu/wp-content/uploads/2011/01/DSEL-Little.pdf


Why to use DSLs and EDSLs?

The Non-Standard answers:

One may not simply give a full programming

platform to end-users:

 End-users have expertise in breaking everything in 

completely obscure, unexpected and naive ways

 So: Less (genericity) is More!
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Why to use DSLs and EDSLs?

In science:

Main part of domain specificity comes from:

 Applied Mathematics
(e.g. Linear algebra, harmonic analysis etc.)

 Field specific established constructs & methods
(e.g. jargon, symbols, compositional schemes etc.)
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Designing a Scientific EDSL

Problems in Scientific HPC computing:

 Extreme variety of computing hardware

yet, lack of sw devs understanding how hw works…

 High variety of low-level acceleration APIs

hard to see the compromises, portability issues

 The hierarchical parallelism problem…
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Designing a Scientific EDSL

Problems in Scientific HPC computing:

Users want more, they:

 … need to handle big data

 … have to deliver efficient computations

 … have to be scalable and portable

… need it to be done for Yesterday!
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Some Tech details 1/5

Statically known vs Dynamically known values:

Consider a linear algebra routine doing some operation on an array.

 If the length of the array is known at compile time, we or 

the compiler can do serious optimizations (like vectorization)

 However, if the length is a dynamic parameter, it will 

bring overhead and hard to optimize…
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Some Tech details 2/5

Imperative vs Functional style

 Low-level approaches prefer imperative
closer to hw, explicit control of memory, data, threads etc.

 High-level design and Mathematics prefer functional
more composible, easier to reason about, scales better, safer
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Some Tech details 3/5

Additional tools:

Meta-Programming and Higher-order functions

Automate repetitive tasks

 Macros  they should be the past (unsafe, uncheckable)

 Templates / Generics
generic, type checked abstractions, that can be specialised for specific tasks

 Higher-order functions
generic, type checked abstractions, parametrized over functions

 Concepts / Typeclasses
for describing constraints, relationships and interface
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Some Tech details 4/5

Additional tools:

Symbolic manipulations

 Optimizations
build an intermediate structure of actions,

analyse and simplify, such that the result is the same,

so the evaluation is more efficient

 Symbolic Algebra
various areas of applied mathematics
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Some Tech details 5/5

Additional tools:

Cost estimation

 Strategic decisions

storage and execution of complex structures requires 

multiple tools

The software need guidelines to decide between them!
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But Why C++?

Okay, lets make an EDSL for parallel scientific computations…

Why C++? (At this point!)

 Widespread among HPC Scientific users

 Low-levelness Performance, APIs

 High-levelness type system, template metaprogramming

 Modernization bringing in functional programming
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But Why C++?

One main point:

The semantics of the EDSL can be worked out and tested

in C++ fast and can later be ported out into a

language independent DSL.
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How to achieve hierarchical parallelism?
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How to achieve hierarchical parallelism?

While being able to:

 … handle big data

 … deliver efficient computations

 … scale the performance

… deliver solutions for Yesterday!?
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How to achieve hierarchical parallelism?

Strategic decisions need information…

 Build a tree of the computation, data layout
Abstract Syntax Trees (ASTs)

 Analyse it 
cost estimation: data size, function complexity

 Select from lower-level implementation schemes
need hw information at compile time!
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How to achieve hierarchical parallelism?

Select from lower-level implementation schemes:
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Execution

Sequential

C++ threads

GPU threads

GPU thread groups

Cluster

Cloud

Storage

Compile-time

Stack

Heap

GPU memory

Streamed from file

Streamed from network



What to put into the AST?

 Functional programs are easier to manipulate

and reason about

The AST has function abstraction, application, type 

annotations and similar basic constructs

 One important built-in: parallel functions

 Higher-order functions and inlining is easy

 Symbolic manipulations directly on the AST
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Embedding into C++

Embedding the meta-language:

 Operator overloading
declaration:       id|type
function type:    type1_in * type2_in >> type_out
simple arrays:     type[size]

 Some macros
lambda functions:     la(id){ expression; };
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Embedding into C++

MetaBegin();
{

//simple function
mul|Int * Int >> Int = la(x, y){ x*y; };

//parallel function definition:
F|Range(0, 3) * (Int * Int >> Int) * Int[4] >> Int[4] =

la(i, g, A){ g(A[0], A[i]); };

//exported parallel function call
f|Range(0, 3) * Int[4] >> Int[4] = la(i, A){ F(i, mul, A); };

}
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AST Transformations

 Symbolic manipulations:

sq | Float >> Float = la(x){ x*x; };
f  | Float >> Float = diff(2*sq(x), x);

 Defunctionalization / inlineing

creates ordinary functions from higher-order ones

 Target language source code generation

currently: C++/OpenCL
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Current status

 Simple parallel programs can be formulated

in the meta-language

 Host-side (non-parallel functions) are exported into C++

 Client-side (parallel functions) are exported into OpenCL

 Experimental symbolic manipulations

and automatic inlineing
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Further work

 Finalizing the meta-compiler to handle generic types,

rewritings (mathematics), and argument type deduction (like in C++)

 Develop other low-level target language constructs like parallel API 

data storage and function execution implementations

C++ AMP, SyCL, OpenCL 2.1, MPI

 Some other utility language features

(typed macro language, threading annotations)

 Detach the language from C++, into a separate DSL

D. Berényi 2828. Oct 2015



The goal

 Making high-performance, efficient computing 

more accessible for non-programmer scientists! 
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Thank you!
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