
C++ EDSL
for Parallel Code Generation

Dániel Berényi

Wigner RCP, GPU Lab

Collaborators: Máté Ferenc Nagy-Egri, Bálint Mórász, Gábor Lehel

RO-LCG 2015 Grid, Cloud & High Performance Computing in Science

28. October 2015 - Cluj-Napoca

http://wigner.mta.hu/
http://wigner.mta.hu/

Contents

 What is a DSL / EDSL?

 Why to use such languages?

 Design considerations for a scientific computation language

 But why in C++?

 How to achieve hierarchical parallelism?

 Current status

D. Berényi 228. Oct 2015

The goal

 Making high-performance, efficient computing

more accessible for non-programmer scientists!

D. Berényi 328. Oct 2015

What is a DSL?

Types of (programming) languages:

 Generic Purpose Languages (GPLs)
Let you to do many thing with the same ease and expressivity

 Domain Specific Languages (DSLs)
Let you to do one thing with the maximum ease and expressivity

 DSLs describe schemes (programs, structures, etc.)

in they specific, native terms (jargon, symbols etc.)

D. Berényi 428. Oct 2015

What is a DSL?

Some examples of DSLs:

D. Berényi 528. Oct 2015

DSL Field, Domain

VHDL Hardware Description

TeX, LaTeX Document Layout

HTML Document markup

Postscript 2D imaging

SQL Databases

Make, Ninja Software building

What is an EDSL?

Developing and Learning a new language is hard!

Why not reuse existing languages?

 Embedded Domain Specific Languages
are not independent languages, they are formulated

inside an existing GPL, the host language.

 Easier to create

 Easier to learn for the users who know the host language.

D. Berényi 628. Oct 2015

Why to use DSLs and EDSLs?

The Standard answers: (taken from: Paul Hudak: DSLs)

 They are more concise

 Easier to write

 Easier to maintain

 Easier to reason about (debugging)

They can be written by non-programmers!
D. Berényi 728. Oct 2015

http://haskell.cs.yale.edu/wp-content/uploads/2011/01/DSEL-Little.pdf

Why to use DSLs and EDSLs?

The Non-Standard answers:

One may not simply give a full programming

platform to end-users:

 End-users have expertise in breaking everything in

completely obscure, unexpected and naive ways

 So: Less (genericity) is More!

D. Berényi 828. Oct 2015

Why to use DSLs and EDSLs?

In science:

Main part of domain specificity comes from:

 Applied Mathematics
(e.g. Linear algebra, harmonic analysis etc.)

 Field specific established constructs & methods
(e.g. jargon, symbols, compositional schemes etc.)

D. Berényi 928. Oct 2015

Designing a Scientific EDSL

Problems in Scientific HPC computing:

 Extreme variety of computing hardware

yet, lack of sw devs understanding how hw works…

 High variety of low-level acceleration APIs

hard to see the compromises, portability issues

 The hierarchical parallelism problem…

D. Berényi 1028. Oct 2015

Designing a Scientific EDSL

Problems in Scientific HPC computing:

Users want more, they:

 … need to handle big data

 … have to deliver efficient computations

 … have to be scalable and portable

… need it to be done for Yesterday!

D. Berényi 1128. Oct 2015

Some Tech details 1/5

Statically known vs Dynamically known values:

Consider a linear algebra routine doing some operation on an array.

 If the length of the array is known at compile time, we or

the compiler can do serious optimizations (like vectorization)

 However, if the length is a dynamic parameter, it will

bring overhead and hard to optimize…

D. Berényi 1228. Oct 2015

Some Tech details 2/5

Imperative vs Functional style

 Low-level approaches prefer imperative
closer to hw, explicit control of memory, data, threads etc.

 High-level design and Mathematics prefer functional
more composible, easier to reason about, scales better, safer

D. Berényi 1328. Oct 2015

Some Tech details 3/5

Additional tools:

Meta-Programming and Higher-order functions

Automate repetitive tasks

 Macros they should be the past (unsafe, uncheckable)

 Templates / Generics
generic, type checked abstractions, that can be specialised for specific tasks

 Higher-order functions
generic, type checked abstractions, parametrized over functions

 Concepts / Typeclasses
for describing constraints, relationships and interface

D. Berényi 1428. Oct 2015

Some Tech details 4/5

Additional tools:

Symbolic manipulations

 Optimizations
build an intermediate structure of actions,

analyse and simplify, such that the result is the same,

so the evaluation is more efficient

 Symbolic Algebra
various areas of applied mathematics

D. Berényi 1528. Oct 2015

Some Tech details 5/5

Additional tools:

Cost estimation

 Strategic decisions

storage and execution of complex structures requires

multiple tools

The software need guidelines to decide between them!

D. Berényi 1628. Oct 2015

But Why C++?

Okay, lets make an EDSL for parallel scientific computations…

Why C++? (At this point!)

 Widespread among HPC Scientific users

 Low-levelness Performance, APIs

 High-levelness type system, template metaprogramming

 Modernization bringing in functional programming

D. Berényi 1728. Oct 2015

But Why C++?

One main point:

The semantics of the EDSL can be worked out and tested

in C++ fast and can later be ported out into a

language independent DSL.

D. Berényi 1828. Oct 2015

How to achieve hierarchical parallelism?

D. Berényi 1928. Oct 2015

How to achieve hierarchical parallelism?

While being able to:

 … handle big data

 … deliver efficient computations

 … scale the performance

… deliver solutions for Yesterday!?

D. Berényi 2028. Oct 2015

How to achieve hierarchical parallelism?

Strategic decisions need information…

 Build a tree of the computation, data layout
Abstract Syntax Trees (ASTs)

 Analyse it
cost estimation: data size, function complexity

 Select from lower-level implementation schemes
need hw information at compile time!

D. Berényi 2128. Oct 2015

How to achieve hierarchical parallelism?

Select from lower-level implementation schemes:

D. Berényi 2228. Oct 2015

Execution

Sequential

C++ threads

GPU threads

GPU thread groups

Cluster

Cloud

Storage

Compile-time

Stack

Heap

GPU memory

Streamed from file

Streamed from network

What to put into the AST?

 Functional programs are easier to manipulate

and reason about

The AST has function abstraction, application, type

annotations and similar basic constructs

 One important built-in: parallel functions

 Higher-order functions and inlining is easy

 Symbolic manipulations directly on the AST

D. Berényi 2328. Oct 2015

Embedding into C++

Embedding the meta-language:

 Operator overloading
declaration: id|type
function type: type1_in * type2_in >> type_out
simple arrays: type[size]

 Some macros
lambda functions: la(id){ expression; };

D. Berényi 2428. Oct 2015

Embedding into C++

MetaBegin();
{

//simple function
mul|Int * Int >> Int = la(x, y){ x*y; };

//parallel function definition:
F|Range(0, 3) * (Int * Int >> Int) * Int[4] >> Int[4] =

la(i, g, A){ g(A[0], A[i]); };

//exported parallel function call
f|Range(0, 3) * Int[4] >> Int[4] = la(i, A){ F(i, mul, A); };

}
D. Berényi 2528. Oct 2015

AST Transformations

 Symbolic manipulations:

sq | Float >> Float = la(x){ x*x; };
f | Float >> Float = diff(2*sq(x), x);

 Defunctionalization / inlineing

creates ordinary functions from higher-order ones

 Target language source code generation

currently: C++/OpenCL

D. Berényi 2628. Oct 2015

Current status

 Simple parallel programs can be formulated

in the meta-language

 Host-side (non-parallel functions) are exported into C++

 Client-side (parallel functions) are exported into OpenCL

 Experimental symbolic manipulations

and automatic inlineing

D. Berényi 2728. Oct 2015

Further work

 Finalizing the meta-compiler to handle generic types,

rewritings (mathematics), and argument type deduction (like in C++)

 Develop other low-level target language constructs like parallel API

data storage and function execution implementations

C++ AMP, SyCL, OpenCL 2.1, MPI

 Some other utility language features

(typed macro language, threading annotations)

 Detach the language from C++, into a separate DSL

D. Berényi 2828. Oct 2015

The goal

 Making high-performance, efficient computing

more accessible for non-programmer scientists!

D. Berényi 2928. Oct 2015

Thank you!

D. Berényi 3028. Oct 2015

