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SUMMARY: Three topics in the Bayesian automatic
adaptive quadrature are discussed:
e (1) The accuracy specifications controlling the error tolerance

of the derived output need a twofold scrutiny:
- check of the reliability of the accuracy specification at input;
- check for the need of integrand dependent accuracy bounds.

e (2) Avoidance of overcomputing & minimization of the
hidden floating point loss of precision asks for the consideration
of three classes of integration domain lengths endowed with
specific quadrature sums: microscopic (trapezoidal rule),
mesoscopic (Simpson rule), and macroscopic (quadrature sums of
high algebraic degrees of precision).

e (3) Sensitive diagnostic tools for the Bayesian inference on

macroscopic ranges, coming from the use of Clenshaw-Curtis
quadrature, are illustrated
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We consider the BAAQ numerical solution of the Riemann integral
b

I =I[f] = f g f(x)dx, —o<a<b< oo,

under the assumption that the real valued integrand function f(x) 1s
continuous almost everywhere on [a, b] such that / exists and i1s finite.
The weight function g(x) either absorbs an analytically integrable
difficult factor in the integrand (e.g., endpoint singularity or oscillatory
function), orelse g(x) =1, Vx € [a, b].
The automatic adaptive quadrature (AAQ) solution of / rests on the
use of an interpolatory quadrature sum to get an approximation
Q = Qlf] o I[f].
The meaningfulness of Q|[f] is assessed by deriving a bound
E = E[f]>0 to the remainder R[f] = I[f] — Q[f] .
For a prescribed accuracy t requested at input, the approximation
O to I 1s assumed to end the computation provided

RIf]| < E <.



The definition of T needs two parameters: the absolute accuracy &,
and the relative accuracy &, , such that

T =max{eg, & - |I[} = max{eq, & - [Q}.
If the remainder boundedness condition 1s not satisfied, the AAQ
approach to the solution attempts at decreasing the error £ by the
subdivision of the integration domain [a,b] into subranges using
bisection and the computation of a local pair {q, e > 0} over each
newly defined subrange [a, 8]  [a, b] .
This procedure builds a subrange binary tree the evolution of which
is controlled by an associated priority queue.
Local pairs {q;,e; > 0} are computed over the i-th subrange of [a, ]
and global outputs {Qy, Ey > 0} are got by summing the results
obtained over the N existing subranges in [a, b].

After each subrange biary tree update, the termination criterion 1s
checked until it gets fulfilled.



The existing strict mathematical bounds to R[f] are of little use in the
Implementation of practical codes.

The derivation of a practical bound e > 0 to g rests on probabilistic
arguments the validity of which is always subject to doubt.

The BAAQ advancement to the solution incorporates the rich AAQ
accumulated empirical evidence into a general frame based on the
Bayesian inference.

Essentially, the probabilistic character of the AAQ approach is
preserved. However, each step of the gradual advancement to the
solution is scrutinized based on a set of hierarchically ordered
criteria which enable decision taking in terms of the established
diagnostics.
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Input Reliability Check

e Let {&,0, ¢} denote the input provided values for the
accuracy parameters.

e The Input reliability check aims at setting up reliable
values {¢,(, ¢, (0} to be used within the BAAQ.

o Sa(i) IS mapped onto a non-negative value Sa(r),

Sa(r) = max{aa(i), 0.0}.
o Sr(i) IS mapped onto an inner value Sr(r) satisfying
Er(r) = min{rceil(), max{er(i), rfloor()}};

rceil() = 2 ; rfloor() = epmach() /rceil(), epmach() = 2-°2
denote two empirically defined environment functions.



Integrand Dependent Accuracy Bounds

e For the derivation of iIntegrand dependent accuracy
bounds, we compute Qy = Qy [f] and Ty, = Qy [|fl].

o At the first attempt to solve the integral:

If the result Q, = 0.0 was obtained, then we set E; = 0.0

and decide on the end of computation.
e Otherwise, Qy # 0.0 will hold, hence we may define

pn = epmach() - (Ty / |Qul)-

The condition p, > rceil() diagnoses the occurrence of
catastrophic cancellation by subtraction, hence the end of
computation with a message of useless output.



Integrand Dependent Accuracy Bounds

e Otherwise, the termination of computations Is checked
for integrand dependent accuracy bounds at output

{ga(o) : gr(o)}

I —Qul <Ey<max{e,©, &%) Q.
The output accuracy parameters are obtained from the
validated input {&,", &} as follows:

£, = min{e, (", max{|Qy, 1.0}- reeil O}

&) = max{e, (", p3
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- Algebraic and Floating Point Degrees
of Precision

 The algebraic degree of precision, d, is an invariant feature of a
quadrature sum over the field R of the real numbers: its value remains
constant irrespective of the extent and the localization of the current
Integration domain over the real axis.
e Under floating point computations, the characterization of an
Interpolatory quadrature sum is made by its floating point degree of
precision, dg, .

Given the integration domain [a, b] (a # b), the value of d, Is
determined by the magnitude of the parameter

A=|L|/max{1.0, X} (A>0.0),
where
L=b-a (L#0.0); X=max{|al, |bl} (X>0.0).
The quantity A defines the floating point scale length of [a, b].
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Features of the Floating Point Degree of Precision

* Gliding mtegration range [0,1] on the real axis.

The following plot gives outputs for the family of 1024 integration ranges
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dy, = &= 31 at low j values
(/=0,1, 2), then dg,
abruptly decreases at
larger but small enough j,
to show slower decreasing
rates under the
displacement of [0,1] far
away from the origin,
reaching a bottom value
d, =35 at 701 < j <1023,



The Iaverse Problem

e Find the family of the integration ranges [, ] over which the
floating point degree of precision cannot exceed a prescribed
value d.

e Possibilities at hand: d >>1 (the standard assumption of the
AAQ and previous BAAQ implementations), d = 4 (the, perhaps
composite, Simpson rule), d = 2 (the, perhaps composite,
trapezoidal rule).

Each of these three cases corresponds to specific integration
domain lengths, which are separated from each other by two

empirically chosen thresholds, 7,, and 7,,, , defined below. They

separate three classes of integration domain lengths
corresponding to various quadrature sums at hand.



Three Classes of Integration
Domain Lengths

e Microscopic ranges [using (composite) trapezoidal rule (d = 2)],
are characterized by the threshold condition
0 < min(X,p) <71, =272,
* Mesoscopic ranges [using (composite) Simpson rule (d = 4)],
are characterized by the threshold condition
T, =27 <min(X,p) < 1, =278
® Macroscopic ranges [using quadrature sums of high algebraic
degrees of precision], are characterized by the threshold condition
min(X,p) <1, = 278.
=T, = 2722 corresponds to d =3
==1,, = 278 corresponds to d = 8; it results in negligible
round off over the macroscopic domain lengths.



Given a microscopic (or mesoscopic) integration range [, f] € R,

the minimization of the round-off errors within the trapezoidal rule
(or Simpson rule respectively) is secured as follows.

The integration range [, B] is mapped onto [0, 1] by the substitution
(floating point representations and floating point operations with the
involved quantities are assumed) x = a + hy, h=f — «

and the current Riemann integral over [a, 8] is transformed

accordingly to get
1

o] = h f g@+hy)-9O)dy, @O = f(a+hy)
0

This step associates the unavoidable round-off cancellation error
coming from the computation of the integration domain length 4.
Besides the minimum number of integrand evaluations asked by the
corresponding quadrature rule, additional requested integrand
evaluations are performed at suitable newly added machine number
reduced abscissas inside [0, 1] in terms of which all the newly
involved subtraction operations in the resulting composite rules are
done exactly.
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Ill-integrand behavior illustrated in the irregular variation of the Chebyshev expansion coefficients for the integrand

fi(x) = |x? + 2x — 2|"/2:[0, 1] = R which shows an inner singularity at x; = V3 — 1 over the specified subranges.
The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and 'o' (for odd).
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Typical patterns of variation of the absolute magnitudes of the
Chebyshev expansion coefficients within the even and odd rank
subsets versus the coefficient labels
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The data on the left figure were derived for the integrand f, (x) = |x? + 2x — 2|7%/2:[0,1] = R which shows an
inner singularity at x; = \/3 — 1 over the specified subranges.

The data on the right figure were derived for the family of integrand functions f>(x) = e?*~%0) sin(wx):[-1,1] = R
n terms of the variable parameters p, X, and w at p = 5 (marked as 'p05' in the file names), at fixed x;, = —1 (not
marked), and at the specified four w values.

The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and o' (for odd).

Three typical integrand conditioning diagnostics are apparent:

(1) Cases (a): well-conditioned, fast converging.

(2) Cases (b): well-conditioned, hopefully converging.

(3) Cases (¢) and (d): ill-conditioned — integrand profile analysis requested to set precise diagnostic.
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The data were derived for the family of integrand functions f, (x) = e?*~%0) sin(wx):[—1,1] = R in terms of
the variable parameters p, x,, and w at p = 40 (marked as 'p40' in the file names), at fixed x; = —1 (not marked),
and at the specified four w values.

The file notations start with the specification of the rank of the Chebyshev subset: 'e' (for even) and o' (for odd).
The same three typical integrand conditioning diagnostics are apparent:

(1) Cases (a): well-conditioned, fast converging.

(2) Cases (b): well-conditioned, hopefully converging.

(3) Cases (c) and (d): ill-conditioned — integrand profile analysis requested to set precise diagnostic.
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e The definition of the admissible output error level in the computed
approximation Q to the given integral I involves two stages:

(1) The user defined accuracy specifications, through the requested
absolute accuracy &, and the requested relative accuracy g, , need
specific validation checks enforcing values within reliability bounds.

(i) The accumulation of knowledge about the solution enables the
derivation of integrand dependent accuracy bounds both for ¢, and e,
which secure the elimination of the over-computing with fake fatal
round-off error diagnostic in the case of sign changing integrands.

e The numerical solution of the Riemann integrals within a BAAQ
approach which avoids the overcomputing and secures the minimization
of the direct and hidden floating point loss of precision Is possible
provided the manifold of the nonvanishing integrand domain lengths is
split into three submanifolds of distinct extension ranges endowed with
specific quadrature sums: microscopic -- trapezoidal rule,

mesoscopic -- Simpson rule, and macroscopic -- guadrature sums of
high algebraic degrees of precision. Many fine details are established.



e Over macroscopic integration ranges, the Clenshaw-Curtis (CC)
quadrature provides fast and sensitive diagnhostic tools which
promote it as the best BAAQ candidate to the provision of the
principal quadrature sum.

Three early Bayesian inference concerning the integrand
conditioning and the expected output quality can be made:

(1) well-conditioned integrand, typical for an easy (or hopefully
converging) integral within the standard automatic adaptive
quadrature approach;

(i1) heavily oscillatory integrand asking for the scrutiny of the
possible redefinition of the attainable output accuracy within the
BAAQ approach;

(i11) highly probable integrand ill-conditioning asking for the
activation of the integrand profile analysis procedure for the
Inference of precise conditioning diagnostics.
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