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SUMMARY: Three topics in the Bayesian automatic 
adaptive quadrature are discussed: 
   • (1) The accuracy specifications controlling the error tolerance 
of the derived output need a twofold scrutiny:  
       - check of the reliability of the accuracy specification at input; 
       - check for the need of integrand dependent accuracy bounds.  
   • (2) Avoidance of overcomputing & minimization of the 
hidden floating point loss of precision asks for the consideration 
of three classes of integration domain lengths endowed with 
specific quadrature sums: microscopic (trapezoidal rule), 
mesoscopic (Simpson rule), and macroscopic (quadrature sums of 
high algebraic degrees of precision). 
 • (3) Sensitive diagnostic tools for the Bayesian inference on 
macroscopic ranges, coming from the use of Clenshaw-Curtis 
quadrature, are illustrated 
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The existing strict mathematical bounds to R[f] are of little use in the 
implementation of practical codes. 
The derivation of a practical bound  e > 0 to q rests on probabilistic 
arguments the validity of which is always subject to doubt. 
The BAAQ advancement to the solution incorporates the rich AAQ  
accumulated empirical evidence into a general frame based on the 
Bayesian inference. 
Essentially, the probabilistic character of the AAQ approach is 
preserved. However, each step of the gradual advancement to the 
solution is scrutinized based on a set of hierarchically ordered 
criteria which enable decision taking in terms of the established 
diagnostics. 
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• Let {εa
(i), εr

(i)} denote the input provided values for the 
accuracy parameters.  

• The input reliability check aims at setting up reliable 
values {εa

(r), εr
(r)} to be used within the BAAQ.  

•  εa
(i) is mapped onto a non-negative value  εa

(r), 

εa
(r) = max{εa

(i), 0.0}. 

•  εr
(i) is mapped onto an inner value εr

(r) satisfying  

 εr
(r) = min{rceil(), max{εr

(i), rfloor()}}; 
   rceil() = 2-8 ; rfloor() = epmach()∕rceil(), epmach() = 2-52 
denote two empirically defined environment functions.  

Input Reliability Check 



• For the derivation of integrand dependent accuracy 
bounds, we compute  QN = QN [f] and TN = QN [|f|]. 

•  At the first attempt to solve the integral:  
If the result Q1 = 0.0 was obtained, then we set E1 = 0.0 

and decide on the end of computation.  
•  Otherwise, QN ≠ 0.0 will hold, hence we may define  

 ρN = epmach() ⋅ (TN / |QN|). 
The condition ρN > rceil() diagnoses the occurrence of 

catastrophic cancellation by subtraction, hence the end of 
computation with a message of useless output. 

Integrand Dependent Accuracy Bounds 



•  Otherwise, the termination of computations is checked 
for integrand dependent accuracy bounds at output 

{εa
(o), εr

(o)} 
|I − QN| < EN < max{εa

(o) , εr
(o) |Q|}. 

The  output accuracy parameters are obtained from the 
validated input {εa

(r), εr
(r)} as follows: 

εa
(o) = min{εa

(r), max{|QN|, 1.0}⋅ rceil()}. 

εr
(o) = max{εr

(r), ρN}. 

Integrand Dependent Accuracy Bounds 
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• The algebraic degree of precision, d, is an invariant feature of a 
quadrature sum over the field ℝ  of the real numbers: its value remains 
constant irrespective of the extent and the localization of the current 
integration domain over the real axis. 
• Under floating point computations, the characterization of an 
interpolatory quadrature sum is made by its floating point degree of 
precision, dfp .  
    Given the integration domain [a, b] (a ≠ b), the value of dfp is 
determined by the magnitude of the parameter  

λ = |L| ∕ max{1.0, X}     (λ > 0.0), 
where 

L = b – a   (L ≠ 0.0);   X = max{|a|, |b|}   (X > 0.0). 
The quantity λ defines the floating point scale length of [a, b].  

Algebraic and Floating Point Degrees 
of Precision 



Gauss-Kronrod 10-21 
local quadrature rule 

Features of the Floating Point Degree of Precision 
• Gliding integration range [0,1] on the real axis. 

The following plot gives outputs for the family of 1024 integration ranges 
{[jα, jα + β], α = β = 1; j = 0, 1, ..., 1023} 

Variation of the floating 
point degree of precision 
of the GK 10-21 local 
quadrature rule over the 
gliding range [0, 1] versus 
its distance j from the 
origin. It is shown that    
dfp = d = 31 at low j values 
(j = 0, 1, 2), then dfp 
abruptly decreases at 
larger but small enough j, 
to show slower decreasing 
rates under the 
displacement of [0,1] far 
away from the origin, 
reaching a bottom value 
dfp = 5 at 701 ≤  j ≤ 1023. 



The Inverse Problem  



Three Classes of Integration 
Domain Lengths 
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Typical patterns of variation of the absolute magnitudes of the 
Chebyshev expansion coefficients within the even and odd rank 

subsets versus the coefficient labels 
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• The definition of the admissible output error level in the computed 
approximation Q to the given integral I involves two stages: 

(i) The user defined accuracy specifications, through the requested 
absolute accuracy εa and the requested relative accuracy εr , need 
specific validation checks enforcing values within reliability bounds. 

 (ii) The accumulation of knowledge about the solution enables the 
derivation of integrand dependent accuracy bounds both for εa and εr, 
which secure the elimination of the over-computing with fake fatal 
round-off error diagnostic in the case of sign changing integrands.  
• The numerical solution of the Riemann integrals within a BAAQ 
approach which avoids the overcomputing and secures the minimization 
of the direct and hidden floating point loss of precision is possible 
provided the manifold of the nonvanishing integrand domain lengths is 
split into three submanifolds of distinct extension ranges endowed with 
specific quadrature sums: microscopic -- trapezoidal rule,   
mesoscopic -- Simpson rule, and macroscopic -- quadrature sums of 
high algebraic degrees of precision. Many fine details are established. 



• Over macroscopic  integration ranges, the Clenshaw-Curtis (CC) 
quadrature provides fast  and sensitive diagnostic tools which 
promote it as the best BAAQ  candidate to the provision of the 
principal quadrature sum. 
    Three early Bayesian inference concerning the integrand 
conditioning and the expected output quality can be made: 
    (i) well-conditioned integrand, typical for an easy (or hopefully 
converging) integral within the standard automatic adaptive 
quadrature approach; 
    (ii) heavily oscillatory integrand asking for the scrutiny of the 
possible redefinition of the attainable output accuracy within the  
BAAQ approach; 
    (iii) highly probable integrand ill-conditioning asking for the 
activation of the integrand profile analysis procedure for the 
inference of precise conditioning diagnostics. 



 
 Thank you for your attention !  
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