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Motivation 
Current status in remote sensing: 

• Large hyperspectral images (containing hundreds of spectral bands) are 
available 

• Need of tools to efficiently process large amount of data 

 

Main challenges in processing large hyperspectral data: 

• The image could be too large to be efficiently read and store on one 
computing node 

• The image analysis could involve massive computations 

 

Thus,  an efficient exploitation of HPC particularities is required …  
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Aim of this work 
To address the computational challenges  of  parallel implementations of 

two clustering algorithms for hyperspectral images : 

 

• a spatial variant of Fuzzy C-means  (SFCM) 

– iterative process requiring  collective computations and frequent transfer of 
data between computing nodes 

• a morphological automated endmember extraction  algorithm  (AMEE) 

– requires the extraction of global endmembers from the local ones generated 
at each computing node and the computation of a similarity measure 
between a large number of  endmembers 

 

in the context of using 

• BlueGene/P supercomputer 

• 1024 quad-core, 850Mhz PowerPC 450d each with 1GB RAM 
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I/O challenges 

• When reading and storing large 
amount of data on BlueGene/P one 
should take BG/P I/O System 
particularities 
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I/O challenges 
Possible approaches: 

 

a) All-read image distribution 

 

b) One -to-All image distribution 

 

c) One-to- All using shared memory 
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I/O challenges 
All-read image distribution 

 

• Simplest but less efficient 

 

• Memory usage : 

– each processor has to load the entire image 
into memory and extract only one slice of it 

 

• Network bandwidth usage: 
– each processor the entire image into 

memory -> the network bandwidth 
becomes soon inefficient 
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I/O challenges 
One-to-all image distribution 

• Minimizes the storage-memory data load 

 

• Main particularities: 

– a subset of computing nodes  are 
selected to be data distribution 
processors 

– the image slices are distributed over 
the computing nodes via the MPI 
communication subsystem 

– the number of data distribution nodes 
should be carefully selected in order to 
not induce high communication 
overhead 
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I/O challenges 
One-to-all using shared memory 

• Optimized version of one to all image 
distribution model 

 

• Main particularities: 

– usage of global arrays toolkit for 
exposing a shared image such that the 
computing nodes can copy their 
corresponding slices 

– one processor read the image and 
populate a data structure  in  a shared 
memory 
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Computational Challenges 

• Case study for  parallel unsupervised classification (clustering) based on 
two iterative algorithms:   SFCM and AMEE 

• Input data:  

–  Image =  {x1, ..., xn} ,  n = number of pixels,  xi= (xi1,..., xid),  d = number of 
spectral bands 

      (set of vectors  corresponding to all pixels and containing the values 
corresponding to the spectral bands) 

– Number of classes/ endmembers to be identified (c) 

• Output data: 

SFCM:  membership matrix (of size c x n): uij  is a value in [0,1] specifying the 
degree of membership of pixel  i to class j;  classes centroids  = {v1,...,vc} 

AMEE:   set of endmembers (of size c x n) 

– Classified image = {y1,...,yn}, yi = value related to the label of the class to which 
xi belongs 
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Parallelization Idea 

• Split the image in slices 

– horizontal/vertical slices 

– rectangular slices 

• Process each slice and compute local 
info 

– SFCM:  local membership values 

– AMEE: local endmembers 

• Collect/transfer local information via 

– collective operations (MPI 
AllReduce) 

– point to point transfer (MPI 
Send/Recv) 
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Spatial Fuzzy C-Means 
SFCM Algorithm [Chuang, 2006] 

• Initialization of the membership values 

• DO 

– Compute the centroids 

– Compute the spatial information 
(hij) 

– Estimate the membership values 
(uij) 

– Adjust the membership values (uij) 

– WHILE  (there are significant 
changes  in the membership 
values) 

• Construct the classification 

Centroids computation  (global) 

Membership values estimation (local) 
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Parallel SFCM 

• Split the image in slices: S1,..., SP 

• Split the computation: 
  

 

 

 







1

1

...

...

Si Si

m

ij

m

ij

Si Si

i

m

iji

m

ij

j

P

P

uu

xuxu

v

• Processor k  computes: 
• The corresponding membership values (requires transfer of border 

values  between processors dealing with neighboring slices) 
• The partial sums involved in the centroids computation 
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• The  local maximal difference between the membership values at 
two consecutive iterations 

 

12 RO-LCG, 27 October 2012 



Parallel AMEE 
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Notations: 

PSSP = image slice 

MEI = matrix of 
eccentricity indices 

kernel = structuring 
element for the 
morphological 
operation 

SAM = spectral angle 
measure 

P= number of 
endmembers 



Experiments:  Implementation 
Parallel implementation: 
 
C, MPI  (MPICH-2), libtiff (3.9.1) 
 
Communication between processors: 

MPI_COMM_WORLD 
MPI_AllReduce 
MPI_Send, MPI_Recv (SFCM) 
 

Particularities: 
• IBM XL Compiler 
• MPICH BlueGene/P version 
• optimization flags: 
“-O3 -qhot -qipa=level=2 -
qarch=450d”. 
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BlueGene/ P 
• Nodes: 32 nodes x 32 compute cards x 
1CPU 
 

• CPU: 850Mhz PowerPC 450d, 4 cores 
per CPU (32 bits mode); 
 
• RAM: 1GB / core; 
 
• High-speed interconnect: 3D Torus 
40Gbps bandwith (3μs response time 
on MPI communication)  
 
• Collective interconnect: 53Gbps 
bandwith (5μs response time for MPI 
communication) 



SFCM: influence of partitioning 
 

Test image: AVIRIS Low Altitude (224 bands, 614x1097 pixels) 
http://aviris.jpl.nasa.gov/html/aviris.freedata.html   

Algorithm:SFCM  

Parameters:  100 iterations, 5 classes, neighborhood size=5 
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Remark:  almost square like 
partitioning leads to a 
significantly better speedup 
than vertical (or horizontal) 
image partitioning 
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http://aviris.jpl.nasa.gov/html/aviris.freedata.html


AMEE:  optimization  
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Optimization  elements: 

 

• exploit the structure of spectral 
angle metric to optimize the 
paired distances between local 
endmembers 

• avoid a global computation by a 
particular procedure to merge 
local sets of endmembers 

• control the synchronization among 
processes in the context of using 
collective communications 
(MPIBarrier) 

Optimized implementation of AMEE

Non-optimized implementation of AMEE
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Test image: AVIRIS Cuprite (224 bands, 614x2206 pixels) 



Comparative results  
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Test image:  AVIRIS Cuprite (224 bands, 614x2206 pixels)  

Remarks:   

• computational costs of SFCM higher than for AMEE 

• better efficiency for parallel SFCM than for parallel AMEE 



Comparative results  
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Test image:  AVIRIS 
Cuprite (224 bands, 
614x2206 pixels)  

Left:  original image 

Middle & right:  results 
after 50 iterations 

 

Clustering quality 
index: 

(VK = Kwon index) 

- smaller values 
mean better 
clustering 

- SFCM leads to a 
better clustering 



Conclusions 
 

Efficient parallel implementations hyperspectral images processing algorithms 
requires: 

• exploitation of  I/O system particularities 

• careful division of the image in order to minimize the point to point 
communication costs 

• optimized usage of collective operations 

 

 

Choosing an appropriate classification algorithm usually leads to: 

• trade-off between costs and  the classification quality 
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