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Motivation

Current status in remote sensing:

* Large hyperspectral images (containing hundreds of spectral bands) are
available

* Need of tools to efficiently process large amount of data

Main challenges in processing large hyperspectral data:

 The image could be too large to be efficiently read and store on one
computing node

* The image analysis could involve massive computations

Thus, an efficient exploitation of HPC particularities is required ...
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Aim of this work

To address the computational challenges of parallel implementations of
two clustering algorithms for hyperspectral images :

* aspatial variant of Fuzzy C-means (SFCM)

— iterative process requiring collective computations and frequent transfer of
data between computing nodes

* a morphological automated endmember extraction algorithm (AMEE)

— requires the extraction of global endmembers from the local ones generated
at each computing node and the computation of a similarity measure
between a large number of endmembers

in the context of using
* BlueGene/P supercomputer
1024 quad-core, 850Mhz PowerPC 450d each with 1GB RAM
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/O challenges

IBM BlueGene/P
1/0 System Overview

*  When reading and storing large
amount of data on BlueGene/P one
should take BG/P /O System

particularities
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Possible approaches:

[ Torus network — 5.6GB/s per link |

[ Collective network — 1.7GB/s per link |

a) All-read image distribution
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b) One -to-All image distribution
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c) One-to- All using shared memory
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b) One-to-all image distribution
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All-read image distribution

[ Torus network — 5.6GB/s per link |

[ Collective network — 1.7GB/s per link |

* Simplest but less efficient

| I/O Node | | I/0 Node |

‘\/

| external storage |

* Memory usage:

a) All-read image distribution

[ Torus network —5.6GB/s per link |
) E3

— each processor has to load the entire image
into memory and extract only one slice of it
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 Network bandwidth usage:

— each processor the entire image into
memory -> the network bandwidth
becomes soon inefficient

b) One-to-all image distribution
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One-to-all image distribution

[ Torus network — 5.6GB/s per link |

* Minimizes the storage-memory data load

[ Collective network — 1.7GB/s per link |

| I/O Node | | I/0 Node |

* Main particularities:

| external storage |

— a subset of computing nodes are
selected to be data distribution
processors

a) All-read image distribution
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[ Collective network —1.7GB/s link ]

— the image slices are distributed over
the computing nodes via the MPI
communication subsystem
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b) One-to-all image distribution

— the number of data distribution nodes
should be carefully selected in order to
not induce high communication
overhead
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One-to-all using shared memory

[ Torus network — 5.6GB/s per link |

* Optimized version of one to all image
distribution model

[ Collective network — 1.7GB/s per link |

| I/O Node | | I/0 Node |

| external storage |

* Main particularities:

a) All-read image distribution

— usage of global arrays toolkit for
exposing a shared image such that the
computing nodes can copy their
corresponding slices
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[ Collective network —1.7GB/s link ]
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— one processor read the image and
populate a data structure in a shared
memory

b) One-to-all image distribution
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Computational Challenges

Case study for parallel unsupervised classification (clustering) based on
two iterative algorithms: SFCM and AMEE

Input data:
— Image = {xq, ..., X}, n=number of pixels, x.=(xi,..., Xiy), d = number of
spectral bands

(set of vectors corresponding to all pixels and containing the values
corresponding to the spectral bands)

— Number of classes/ endmembers to be identified (c)

Output data:

SFCM: membership matrix (of size ¢ x n): u; is a value in [0,1] specifying the
degree of membership of pixel ito class j; classes centroids ={v,...,v.}

AMEE: set of endmembers (of size c x n)

— Classified image = {y,,...,¥,}, ¥; = value related to the label of the class to which
x; belongs
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Parallelization Idea

Split the image in slices
— horizontal/vertical slices
— rectangular slices

Process each slice and compute local
info

— SFCM: local membership values
— AMEE: local endmembers
Collect/transfer local information via

— collective operations (MPI
AllReduce)

— point to point transfer (MPI
Send/Recv)
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Spatial Fuzzy C-Means

SFCM Algorithm [Chuang, 2006]

Initialization of the membership values
DO

Centroids computation (global)

n
Zuirjnxi o m>1is a
Compute the centroids Vj — =1 J —1cC parameter
n ] ] _
Compute the spatial information Zu_r_n (e.g. m=2)
(h;) =i

Estimate the membership values  njembership values estimation (local)

(u;)

: : 1
— Adjust the membership values (uy) W, = -
. e 2/(m-1) _

— WHILE (there are significant Hxi —ij 211/”)(i _Vk”Z/(m b

changes in the membership k=1

values) Wi;’hi‘jq
Construct the classification Uj = Z wPha hy = Z_ij

LT keN (i)

i=1n,j=1c
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Parallel SFCM

« Split the image in slices: S.,..., S, Zui';.”xi + o+ Zuirj“xi
* Split the computation: V., = ieSp
J m m
DUl .+ DU
€S, 1€Sp

* Processor k computes:

* The corresponding membership values (requires transfer of border
values between processors dealing with neighboring slices)

* The partial sums involved in the centroids computation

* The local maximal difference between the membership values at
two consecutive iterations

max{| u; (iter +1) -u; (iter) | ; i € S, j =1,¢}
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Parallel AMEE
Algorithm 1 AMEE Parallel

Scatter N partial data structures { PSSP}Y_; of F
=4
MEI(z,y) =0,¥(z,y) € PSSP,
while i < [,,,,, do
Move kernel through each pixel
Compute minimum and maximum
Update MEI with SAM between minimum and maximum
t=1+1
if 1 == [,4, then
break
else
Replace PSSP, with its dilation
end if
end while
Select P endmembers with highest MEI scores
Master gathers all endmembers and forms a unique set of P endmembers by
computing all possible pairs

' RO-LCG, 27 October 2012

Notations:
PSSP = image slice

MEI = matrix of
eccentricity indices

kernel = structuring
element for the
morphological
operation

SAM = spectral angle
measure

P= number of
endmembers

13




Experiments: Implementation

BlueGene/ P

* Nodes: 32 nodes x 32 compute cards x

1CPU

e CPU: 850Mhz PowerPC 450d, 4 cores

per CPU (32 bits mode);
e RAM: 1GB / core;

e High-speed interconnect: 3D Torus
40Gbps bandwith (3us response time
on MPI communication)

e Collective interconnect: 53Gbps
bandwith (5us response time for MPI
ﬁ)mmunication)

o

Parallel implementation:
C, MPI (MPICH-2), libtiff (3.9.1)

Communication between processors:
MPI_COMM_WORLD
MPI_AlIReduce
MPI_Send, MPI_Recv (SFCM)

Particularities:
* IBM XL Compiler
* MPICH BlueGene/P version
 optimization flags:
“-03 -ghot -qgipa=level=2 -
garch=450d".
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SFCM: influence of partitioningN

Tirne [16);Time [F]

Speedup .
estimation Remark: almost square like

partitioning leads to a
significantly better speedup
than vertical (or horizontal)
image partitioning
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Test image: AVIRIS Low Altitude (224 bands, 614x1097 pixels)
http://aviris.jpl.nasa.gov/html/aviris.freedata.html

Algorithm:SFCM
Parameters: 100 iterations, 5 classes, neighborhood size=5
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http://aviris.jpl.nasa.gov/html/aviris.freedata.html

AMEE: optimization N

PE/ B
Optimization elements: s(e) = Z[(Zeik -e‘;)/(HeiH-HejH)j
j=1 \_ k=1
* exploit the structure of spectral U k
angle metric to optimize the 1l &S 8
paired distances between local (&) = H;ei J=1H

endmembers

Efficiency

avoid a global computationbya 7}
particular procedure to merge
local sets of endmembers

08 F Optimized implementation of AMEE

control the synchronization among os
processes in the context of using :
collective communications .
(MPIBarrier) 02 ¢

Non-optimized implementation of AMEE

OO L L L 1 L L L 1 L T L 1 L L L 1 L I I ‘!; L Il NO proc
0 200 400 600 800 1000

Test image: AVIRIS Cuprite (224 bands, 614x2206 pixels)
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Comparative results

Cuprite 50 iterations Cuprite 50 iterations
18000
l\ 16000 2
\ 14000 : . C
12000 = m— T " Ao
Y - — 10000 E s
8000 = e AMEE 2
& -
- 6000 =SFCM 03 = SFCM
X 4000 . . 0.2
—_— ——————— 2000 0.1
; Y . >— —+ 0 ; : 1 ! y v : T 0
1 2 4 8 16 £ 64 128 2% 512 104 1 2 4 8 16 32 64 128 256 512 1024
No. Processors No. Processors

Test image: AVIRIS Cuprite (224 bands, 614x2206 pixels)
Remarks:

* computational costs of SFCM higher than for AMEE

* better efficiency for parallel SFCM than for parallel AMEE
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Comparative results L

Test image: AVIRIS
Cuprite (224 bands,
614x2206 pixels)

Left: original image

Middle & right: results
after 50 iterations

Clustering quality
index:

(V¢ = Kwon index)

- smaller values

mean better
clustering

- SFCM leads to a
better clustering

(a) AMEE, Vi = 51.9 (b) SECM, Vi = 13.04
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Conclusions

Efficient parallel implementations hyperspectral images processing algorithms
requires:

* exploitation of |/O system particularities

e careful division of the image in order to minimize the point to point
communication costs

e optimized usage of collective operations

Choosing an appropriate classification algorithm usually leads to:
* trade-off between costs and the classification quality
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