STUDIA UNIVERSITATIS BABEŞ-BOLYAI, PHYSICA, L, 4b, 2005

STUDY OF THE KINETIC ENERGY RELEASE IN SOME N-METHYL p-ARYLSULFONAMIDO THIOPHOSPHORORGANIC DERIVATIVES

S. Nicoarã¹, N. Palibroda², Z. Moldovan², M. Culea³, O. Cozar³, I. Fenesan⁴

¹ Physics Dept., T.U.C-N, C. Daicoviciu str., 15, 3400 Cluj-Napoca, <u>snicoara@phys.utcluj.ro</u>
² Nat. Inst. R.&D. Isot. Molec. Tech., Donath str., 109, 3400 Cluj-Napoca
³ Physics, "Babeş-Bolyai" Univ., Kogãlniceanu 1, 3400 Cluj-Napoca
⁴ Chemistry Inst. "Raluca Ripan", Donath str., 103, 3400 Cluj-Napoca

ABSTRACT: The mass spectra and the metastable ions cleavage processes, detected in the HV and MIKE scanning modes, are interpreted for: p-fluorinebenzenesulfonamide- (1), p-chlorinebenzenesulfonamide- (2), p-methylbenzenesulfonamide- (3), and p-methoxybenzenesulfonamide- (4) of the N-methyl N',N' - dimethylamidocyclohexylthiophosphonic acid, some p-X substituted arylsulfonamidic thiophosphonamides. The peak width at 50 % height was used for calculating the kinetic energy release T, and the correlation among the peak shape, the T values, and the fragmentation processes are discussed.

Introduction: The purpose of this paper is to interpret the mass spectral bahaviour of some N-methyl substituted arylsulfonamides of the N'dimethylamidocyclohexyl thiophosphonic acid, synthesized at the Chemistry

$$\begin{array}{c}
S & CH_3 \\
\parallel & \parallel \\
cC_6H_{11}P & \hline N & \hline SO_2 & C_6H_4 \\
\hline N(CH_3)_2 \\
Fig. 1. Structural formula of compounds 1-4.
\end{array}$$

Institute "Raluca Ripan" Cluj-Napoca, having the structural formula given in figure 1 and Table 1. Aromatic organophosphorus compounds have the potential to induce or to inhibate certain biochemical reactions [1-4], due to their

molecular structure and interatomic bonds. Mass spectrometry is intensively used for their qualitative/quantitative analysis [5-7] and serves to the primary structural analysis of organic compounds with biological activity [8-9]. Determining the kinetic energy release T in metastable ions transitions, afford the collection of data on the fragmentation mechanism, as the relative contribution of the excess energy of the activated complex (E^{++}) and of the reverse critical energy (E_o^r) to T, influence the metastable peak shape [10-11].

Experimental

The compounds studied **1-4**, were synthesized at the Chemistry Institute "Raluca Ripan", their purity and chemical structure were tested through IR, NMR and MS analysis [12]. The 70 eV electron impact mass spectra were recorded on a double focusing MAT-311 MS. The electron emission current was 100 μ A, the ion 536

KINETIC ENERGY RELEASE IN SOME N-METHYL p-ARYLSULFONAMIDO THIPHOSPHORORGANIC DERIVATIVES

source temperature 150 °C, and the solid sample inlet system was set at the optimum evaporation temperatures for each compound, as presented in Table 1.

Table 1:

	4. Iudicuis, moree	ului ions muss	es, miet system	temperature.
Compound	1 (378)	2 (394)	3 (374)	4 (390)
(mass)				
Inlet temp. T (°C)	170	200	150	120
R (mass, amu)	F (19)	Cl (35)	CH ₃ (15)	OCH ₃ (31)

The compounds **1-4**: radicals, molecular ions masses, inlet system temperature.

The elemental composition of the fragment ions was checked by HR mass measurements (R= 4000, 10 % valley definition), in the peak matching mode, with PFK masses as reference, for compounds **1** and **2**. Metastable ions cleavages were recorded in the HV scanning (3000 V down to 1000 V), and in the MIKE mode (505 V down to 0, $\Delta U/U_0 = 1000$, $U_0 =$ main ion beam voltage) [8,9]. The direct analysis of daughter ions generated in the second field free region, or the DADI spectra, were used to determine the kinetic energy release during the fragmentations recorded.

For a single charged cleavage process: $m_1^+ \rightarrow m_2^+ + m_3^0$, in the second field-free region, the daughter ion mass is: $m_2 = m_1 \cdot U_1 / U_0$, where U_1 is the electric sector voltage corresponding to the daughter ion signal. The amount of kinetic energy T_{50} released during this fragmentation, was calculated using the peak width w at 50 % height, as:

$$T_{50} \cong 5.62 \cdot (w_c/U_0)^2 \cdot m_1^2 / m_2 m_3 \text{ (eV)}$$
 (1)

where w_c is the peak width w at 50 % height corrected with respect to the main ion beam width w_0 = 5,83 mm at semiheight, and with respect to the ions masses

 $w_c = \sqrt{w^2 - \left(w_0 \cdot \frac{m_2}{m_1}\right)^2}$ [8,9]. The coefficient 5,62 results from the experimental

conditions used: 2970 V accurately measured accelerating voltage, an average 20,76 V/min electric sector scanning rate, and 20 mm/min paper speed.

Results and Discussion:

Figure 2 presents the fragmentation pattern of compounds (1-4), discussed elsewhere [12], and the kinetic energy T_{50} determined for certain metastable ions cleavage in the MIKE mode, for the p-fluorinebenzenesulfonamide of the N',N'-dimethylamidocyclohexylthiophosphonic acid (1). Figure 3 shows sample peak shapes for the metastable ions processes analyzed in the MIKE mode for compound (1).

The results of the average kinetic energy T_{50} released during the metastable ions fragmentation in compound (1) are presented in table 2. The standard deviation σ of average T_{50} was calculated for 3-4 repeated determinations.

S. NICOARA, Z. MOLDOVAN, N. PALIBRODA, M. CULEA, O. COZAR, I. FENESAN

Fig. 2. Fragmentation pathways of the N-methyl derivatives **1-4** (* = metastable ion transition detected in HV or MIKE mode in **1** and **2**). The values of T_{50} are given in meV. **Table 2**:

Experimental data, MIKE mode, for the p-fluorinebenzenesulfonamide of the N',N' - dimethylamidocyclohexylthiophosphonic acid (1); $U_0 = 505.0$ V main ion beam; $m_1 =$ precursor ion; $U_1 =$ electric sector voltage for the daughter ion signal; $m_2 =$ calculated nominal mass of the daughter ion.

m ₁	m ₂	U_1	m ₃	average	Wc	$T_{50} \pm \sigma$	ī
				W			
(Da)	(Da)	(V)	(amu,	(mm)	(mm)	(meV)	-
			composition)				
n, 172	<i>o</i> , 124	362,5	48 SO	29,5	29,2	102,2 <u>+</u> 6,8	3,41
	<i>c</i> , 271	435,8	43 NC ₂ H ₅	12,5	11,5	24,7 <u>+</u> 0,0	3,23
<i>a</i> , 314	<i>l</i> , 269	432,6	45 HN(CH ₃) ₂	12,2	10,8	22,2 <u>+</u> 2,7	3,76
	<i>j</i> , 281	451,0	33 (SH)	11,2	9,5	23,0 <u>+</u> 1,4	2,60
	<i>k</i> , 285	458,0	29 HNCH ₂	10,5	8,7	21,5 <u>+</u> 2,1	2,65
$M^{+.}$,	<i>a</i> , 314	418,0	64 SO ₂	18,5	17,5	50,0 <u>+</u> 2,5	3,55
378							
<i>f</i> , 219	g, 190	437,8	29 NCH ₃	12,7	11,2	25,9 <u>+</u> 1,2	2,98

The kinetic energy release may originate in two different sources: E^{++} , the non-fixed excess energy of the activated complex, and E_o^{r} , the reverse reaction

crytical energy [8,9]. Their contributions T^{++} and T^r respectively, to the total translational energy, depend on the precursor ion structure, on the reaction mechanism and products, and influence the metastable peak shape, thus allowing a correlation with the reaction mechanism [13,14]. Simple fission and reactions controlled by the statistical partitioning of the excess energy E^{++} are associated with a Gaussian peak, the squared ratio **r** in Table 2, of the average (22 % height peak width) to the most probable (61 %) energy release, $r=(w_{22}/w_{61})^2$ is equal to 3. If, on the contrary, E_0^{-r} controls the fragmentation, and if the fraction of it appearing as kinetic energy covers only a small range of values, r < 3, the peak is narrower than a Gaussian one. Wider peaks, with r > 3, most likely indicate two or more mechanisms in the fragmentation of the metastable ion.

The base peaks in all four spectra was at m/z 44, corresponding to the abundant ion $\{N(CH_3)_2\}^+$, confirmed via accurate mass measurements. The molecular ion M^+ ; m/z (359+R) of low intensity (1-5 %) peaks in all the spectra, undergoes the elimination of a stable neutral molecule SO₂, very typical for such sulfonamidic compounds [15,16]. The process involves a three membered transition state (N,S,C), and the calculated kinetic energy release (fig.3) was 50±2,5 meV, comparable to the values for similar fragmentations [9]. Since r=3,55, the reverse critical energy E_0^r may have an important contribution to T₅₀ [8].

The metastable ion *a*, m/z (295+R) undergoes the transfer of a H atom from the dimethylamido group onto P, through a four membered transition state, and a kinetic energy release (fig.3) of $24\pm0,2$ meV (r=3,23), that corresponds to the reaction type described, and to the number of excited atoms in the activated complex. The transition $f \rightarrow g$, with the simple P-N bond fission, and the subsequent elimination of a neutral HN=CH₂ molecule, involves a kinetic energy release of $25,9\pm1,2$ meV, that corresponds to this type of fragmentation [8,9,13]. The Gaussian peak, r=2,98, suggests that T⁺⁺ may have an important contribution to T. The ion a may also undergo the transfer of a H atom from the cyclohexyl group to S, through a five membered transition state (P valence changes from 5 to3), prior to the elimination of neutral SH radical, with a kinetic energy release of 23 ± 1.4 meV. The relatively small value of T_{50} and r = 2.60 indicate that T^{++} brings its major contribution to T. The ion a may also lose the neutral NCH₃ radical and result in ion k. The kinetic energy T=21,5+2,1 meV suggests that this process follows a more complex pathway [9], through a five membered transition state, with the migration of H and the subsequent elimination of an unsaturated amine (HN=CH₂) molecule. The peak shape (r=2,65) and the relatively small value of T indicates a random distribution of the kinetic energies, with T⁺⁺ dominant. To produce the structure l, the ion a may undergo the rearrangement of H from the amidic methyl to N, in a five membered transition state, followed by the loss of a neutral HN(CH₃)₂. The relatively low value of the kinetic energy release $22,2\pm2,7$ meV supports this type of fragmentation [8]. The fragment ion n produces (fig 3) the abundant ion o, by eliminating a neutral SO, with a high kinetic energy release, 102 ± 6.8 meV, that may indicate a dominant contribution of T₀^r to the total T. The wider that Gaussian peak (r=3,41) suggests a complex fragmentation mechanism.

Conclusions:

The following values were obtained for the kinetic energy release during metastable ions cleavage:

- simple fission, n > 5: $T_{50} \cong 26 \text{ meV}$

- fragmentation with rearrangements of atoms (H,S), m = 3, n = 2-3: $T_{50} > 50$ meV. - fragmentations with rearrangement of atoms, m = 4 or 5, n > 5, or n = 2: $T_{50}=20-30$ meV, where T = the kinetic energy release calculated based on the half height width of the MIKE peak; m= nr. of active centers in the cyclic transition state of the fragment ion; n= nr. of atoms in the neutral radical or molecule eliminated. A correlation was observed between the kinetic energy release and the type of fragmentation mechanism, the activated complex energy (E^{++}) and the reverse critical energy (E_0^{-r}) contributing in different amounts to the total kinetic energy release, in different fragmentation mechanisms.

References

- I. Fenesan, I. Chioreanu, A. Hantz, Al. Alexandru, R. Pop, FARMACIA XXXI, 3 (1988) 143-150
- 2. L. Almasi: "Les composees thiophosphororganiques", Ed. Masson, Paris (1976).
- C. Fest, K. J. Schmidt: "The Chemistry of Organophosphorus Pesticides", Springer Verlag, Berlin (1973).
- 4. I. Fenesan, R. Popescu, A. Scozzafava, V. Crucin, E. Mateiciuc, R. Bauer, M. Ilies, C. Supuran, J. Enzyme Inhibition, 15 (2000) 297-302.
- 5. Q. N. Porter and J. Baldas: "Mass Spectrometry of Heterocyclic Compounds", Wiley- Interscience, New-York (1971).
- 6. F. W. McLafferty and F. Turecek: "Interpretation of Mass Spectra", University Science Books, Hill Valley, California (1993).

KINETIC ENERGY RELEASE IN SOME N-METHYL p-ARYLSULFONAMIDO THIPHOSPHORORGANIC DERIVATIVES

- 7. I. Fenesan, R. Popescu, C. T. Supuran, S. Nicoarã, N. Palibroda, M. Culea, O. Cozar, *Rapid Commun. Mass Spectrom.*, **15** (2001) 721-729.
- 8. R. G. Cooks, J. H. Beynon, R. Caprioli and G. Lester: "Metastable Ions", Elsevier, Amsterdam (1973).
- 9. Z. Moldovan, N. Palibroda, V. Mercea and G. Mihãilescu, Org. Mass Spectrom., 20 (1985) 77-86.
- 10. R. K. Boyd and J. H. Beynon, Int. J. mass Soectrom. Ion Phys., 23 (1977) 163.
- 11. J. H. Beynon and R. K. Boyd, *Adv. Mass Spectrom.*, 78 (1978) 1115.
- 12. S. Nicoara, M. Culea, N. Palibroda, O. Cozar, I. Fenesan, A. Hantz, Rapid Commun Mass Spectrom., 9 (1995) 61-66.
- 13. Z. Moldovan, Teza: "Studiul proceselor de ciocnire la molecule poliatomice prin spectrometrie de masã" (1982)
- 14. S. Nicoarã: "Utilizarea spectrometriei de masã cu impact electronic în investigarea structurii moleculelor unor compusi organici biologic activi", teza (1997).
- 15. Opreanu: "Spectrometria de masã a compusilor organici", Ed. Dacia, Cluj-Napoca (1973).
- Monica Culea, N. Palibroda, Z. Moldovan, Simona Nicoarã, I. Fenesan, R. Popescu, V. Muresan, E. Postoiu, V. Znamirovschi, *Rapid* Commun. Mass Spectrom., 12 (1998) 1808-1812.