Activity Report for the implementation of the project

TE – PN-III-P1-1.1-TE-2019-1447

CO₂ methanation by MOF based / derived ordered mesoporous catalysts Acronym: CO₂-OMC

Phase 3 – Catalytic activity performance of MOF(Al) based / derived Ni catalysts in CO_2 methanation

Summary

The third phase of the project (January – October 2022) involved activities regarding: (a) evaluation of catalytic activity performance in the methanation of CO_2 for the MOF-based Ni catalysts: Ni@MOF(Al) or Ni@MOF(Al)-Al_2O_3; (b) evaluation of catalytic activity performance in the methanation of CO_2 for the MOF-derived Ni catalysts, such as Ni@Al_2O_3[Ni@MOF(Al)], or Ni/Al_2O_3[MOF(Al)]; (c) stability tests for 24 h time on stream for the most active catalysts from the two series; (d) correlation of catalytic activity with structural, textural and functional properties of catalysts; (e) selection of optimal reaction conditions in the methanation of CO_2 .

Contents of the scientific and technical report (RST)

- 1. Introduction.
- 2. Experimental methods and techniques. Experimental set-up.
- 3. Catalytic activity of MOF-based Ni catalysts: Ni@MOF(Al) and Ni@MOF(Al)-Al₂O₃.
 - 3.1. Temperature influence
 - 3.2. Catalytic stability
- 4. Catalytic activity of MOF-derived Ni catalysts: Ni@Al₂O_{3[Ni@MOF(Al)]}, or Ni/Al₂O_{3[MOF(Al)]}.
 - 4.1. Temperature influence
 - 4.2. Catalytic stability
- 5. Conclusions.
- 6. Results and dissemination.

Conclusions

The aim of this phase being the evaluation of catalytic activity performance of the MOF-based and MOF-derived Ni catalysts (experimental set-up, catalytic test under differential and integral conditions, stability tests, deactivation, etc.), the influence of the reaction temperature on the catalytic performance (CO₂ conversion and CH₄ selectivity) was investigated. The correlation of catalytic performance with catalysts' structural, textural, and functional properties was also targeted. The following conclusions were evidenced:

- 1. MOF-derived catalysts reveal the best catalytic performances in CO₂ methanation. Among these, those obtained by deriving Ni@MOF(AI) are more active than those prepared by impregnation of the mesoporous alumina obtained by calcination of MIL-53(AI), Ni/Al_{MIL-53}.
- 2. Among the MOF-based catalysts, those obtained by Ni impregnation on MIL-53(Al)-Al₂O₃ composites show the best catalytic performance over the entire investigated timeframe. Moreso, all investigated MOF-based catalysts are stable for 24 h time on stream.
- 3. MIL-53(Al) synthesized hydrothermally at 190°C and 12h, compared to 220°C, 72 h (classical procedure) is more advantageous to obtain MOF-derived catalysts, due to their structural, but more so, functional properties, with important contribution on the enhancement of the catalytic performance in CO₂ methanation.

- 4. Use of MIL-53(Al)(as) to obtain Ni/Al_{MIL-53(as)} is very advantageous for two reasons: (a) this catalyst shows the best catalytic performance among the catalysts prepared by impregnation of the MIL-53(Al)-derived alumina, and (b) not only the synthesis procedure for MIL-53(Al) is more advantageous, but calcination of the as-synthesized MOF, avoiding thus the long and energy consuming activation step, brings about an additional economic benefit.
- 5. In order to obtain MOF-based catalysts, MIL-53(Al) synthesized by the classical method is more suitable, since these catalysts show better catalytic performance compared to those obtained by use of MIL-53(Al)_{190.12}.

Results obtained:

(1) *Scientific and technical report* which includes the catalytic activity results for the MOF-based catalysts (Ni@MIL-53(Al)_{190.12}, Ni@MIL-53(Al)_{220.72}, Ni@MIL-53(Al)-Al₂O₃₋₍₁₋₁₎, Ni@MIL-53(Al)-Al₂O₃₋₍₂₋₁₎, Ni@MIL-53(Al)-Al₂O₃₋₍₄₋₁₎) and MOF-derived catalysts (Ni@Al₂O_{3-[D-Ni@M53-190.12]}, Ni@Al₂O_{3-[D-Ni@M53-220.72]}, Ni@Al₂O_{3-[D-Ni@MIL-53(as)}, Ni/Al_{MIL-53(lt})) tested in CO₂ methanation (temperature influence, stability, etc.)

Dissemination of the results obtained during this phase was done by:

(1) *project website* (<u>https://www.itim-cj.ro/PNCDI/co2omc/en/co2-omc-english/</u>);

(2) *papers:*

• Oana Grad, Angela M. Kasza, Alexandru I. Turza, Monica Dan, Lucian Barbu-Tudoran, Mihaela D. Lazar, and Maria Mihet*, on CO₂ methanation by MIL-53(Al)-derived catalysts, under evaluation at *J. Environ. Chem. Eng.* (FI = 7.968)

(3) patents:

• Patent application A/00639 from 17.10.2022 - *Procedeu de obținere a compozitelor MIL-53(AI)-alumină cu diferite grade de depunere a structurii metal-organice MIL-53(AI),* autori: Oana Grad, Alexandru I. Turza, Angela M. Kasza, Monica Dan, Mihaela D. Lazar, Maria Mihet

(2) papers presented at *international conferences*:

- Oana Grad, Angela M. Kasza, Alexandru Turza, Lucian Barbu-Tudoran, Mihaela D. Lazar, <u>Maria Mihet</u>* *MOF derived Ni catalysts for CO₂ methanation*, 13th International Symposium of the Romanian Catalysis Society, RomCat2022, 20-24 Iunie, 2022, Băile Govora, România (oral presentation).
- <u>Angela M. Kasza*</u>, Oana Grad, Alexandru Turza, Monica Dan, Maria Suciu, Mihaela D. Lazar, Maria Mihet* – *MIL-53(AI)-alumina composites with different structural properties – CO₂ methanation as case study*, 13th International Symposium of the Romanian Catalysis Society, RomCat2022, 20-24 June, 2022, Băile Govora, Romania (poster presentation).
- <u>Oana Grad*</u>, Angela Kasza, Alexandru Turza, Mihaela D. Lazar, Maria Mihet *Synthesis of MIL-53(AI)-based catalysts for the methanation of CO*₂, 1st Forum of Young Researchers on Heterogeneous Catalysis, YOURHETCAT2022, 11-13 July, Szeged, Hungary (**oral presentation**).

- <u>Angela M. Kasza*</u>, Oana Grad, Alexandru Turza, Maria Suciu, Maria Mihet* *Methanation of CO₂ using MOF(AI)-derived Ni catalysts*, 1st Forum of Young Researchers on Heterogeneous Catalysis, YOURHETCAT2022, 11-13 July, Szeged, Hungary (**poster presentation**)
- <u>Maria Mihet*</u>, Angela M. Kasza, Oana Grad, Alexandru I. Turza, Mihaela D. Lazar CO₂ methanation using MOF(Al)-based / -derived Ni catalysts, 8thEuChemS Chemistry Congress (ECC8), 28 August – 01 Septembrie, 2022, Lisbon, Portugal (poster presentation).

28.10.2022

Project Coordinator

Dr. Maria Miheț