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Principles of molecular photochemistry
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The role of the radiationless relaxation in photochemistry

Quantum Yield (®) pH Solution QY (%)
measurements for Concentrated
dopamine: 5. Diluted
Concentrated
8.0 Diluted
Nr.Photons Emitted k.,

(I) — =
Nr.Photons Absorbed k, + k,,

For ex. for ®=2.0, the non-radiation process is 50 times faster than the radiation one !!!




The role of the radiationless relaxation in photochemistry

Name: Time scale:

Internal conversion (IC) 10-4-10"s

Non-radiative Intersystem crossing (ISC) 108-103s
processes .

Excited state energy 10-14- 1013 g

and charge transfer

Forster or fluorescence resonance energy transfer (FRET)
Multi-step . : D
processes Triplet-triplet annihilation (TTA)

Singlet fission

The most general radiationless relaxation of a molecule is an “internal conversion” transition through

the so-called conical intersection geometries.




The role of the radiationless relaxation in photochemistry

Internal conversion: is a radiationless transition between energy states of the same spin state

Conical
intersection
(Cl)

~ 100fs-100ps




The role of the radiationless relaxation in photochemistry

Theoretical methods: - Strong static electron correlation effects due to the degenerated electronic states.

= Needs for multiconfigurational (multi-determinant) electronic structure methods:
MCSCF, MRPT2, NEVPT?2, etc.

TDDFT ??? - In principle, is an one-determinant theory (like Hartree-Fock), but in the exchange-

correlation functionals could be include also some terms to cover these effects.

In TDDFT the x(r,r’, w) response function contains the Q,, excitation energies as poles of a complex function:

> () () )
T, w) = — If S, crosses S, one of the poles ~ =
x(rr, ) Z{w—9n+in w+ Q, +in 1 0 P 0o

n=1

—> Wrong dimensionality of the potential energy surface around the Cl geometries !!!




The role of the radiationless relaxation in photochemistry

=

Solution: Spin-flipped time-dependent density functional theory (SF-TDDFT).

The reference (ground state) calculation is the ground triplet state.

(SPIN-FLIP GROUND STATE)

STATE 1: E= 0.033860 au 0.921 eV 7431.4 cm**-1 <S**2> = 1.968551 E::>
19a -> 21b : 0.027181 (c= -0.16486660)
20a -> 20b : 0.311919 (c= -0.55849705)
21a -> 21b : 0.604300 (c= -0.77736722)
21la -> 22b : 0.020863 (c= 0.14443910)

STATE 2: E= 0.035624 au 0.969 eV 7818.6 cm**-1 <S**2> = 0.258584 E:i>
21a -> 20b : 0.974742 (c= ©.98729028)

STATE 3: E= 0.035645 au 0.970 eV 7823.2 cm**-1 <S**2> = 0.138335 E::>
20a -> 20b : 0.662083 (c= ©0.81368483)
21a -> 21b : 0.288447 (c= -0.53707289)




The case of benzene monomer and dimer

Benzene monomer:

Benzene §5@8(d
statecgldobeedegtion
geometry

Half-boat
conformation

- The typical case study of aromatic molecules for conical intersection
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The case of benzene monomer and dimer

Benzene monomer:
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The case of benzene monomer and dimer

Benzene dimer:

Why?

Method: spin-flipped TDDFT

It also contains a significant amount of electron correlation effects

Through the D3 scheme it can be included dispersion effects

Multi-reference SCF does not contain dynamic electron correlation effects

Less computationally expensive

SF-TDDF/wB97X-D3/ma-def2-TZVPP




The case of benzene monomer and dimer

Benzene dimer: REE.

S; (monomer): 3.95 eV

S; (dimer): 3.04 eV - excimer

AE, . = Ex - Eggr

S; equilibrium geometry
Ground state (excimer)

AE, . =-3.14 kcal/mol AE, . =-14.00 kcal/mol == Strong hole — electron interaction




The case of benzene monomer and dimer

Conical intersection in benzene dimer:

A. Monomer deformation

AE. ¢ =+17.60 kcal/mol

AE. ¢ = +17.46 kcal/mol




The case of benzene monomer and dimer

Conical intersection in benzene dimer: Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

B. Dimer deformation Results published in: A. Bende, A.-A.Farcas, Int. J. Mol. Sci. 2023, 24, 2906.

Cl can be reached with
much lower deformation
energy over the

monomers !l

~ 159 A

AE., ¢ = +1.00 kcal/mol

AE_, . = +1.18 kcal/mol




The case of benzene monomer and dimer

Conical intersection in benzene dimer: Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

B. Dimer deformation Results published in: A. Bende, A.-A.Farcas, Int. J. Mol. Sci. 2023, 24, 2906.

(C—-C—-C -
Dihedral angle

~ 159 A
a = 100°

AE_, ¢ = +7.54 kcal/mol

AE_, . = +6.98 kcal/mol




The case of benzene monomer and dimer

Conical intersection in benzene dimer: Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

Results published in: A. Bende, A.-A.Farcas, Int. J. Mol. Sci. 2023, 24, 2906.

C. Transition state: between R3* and R§!

AE. = +7.54 kcal/mol




The case of catechol dimer

Catechol dimer:

Ground state

AE, . =-5.21 kcal/mol

REF.

S; (monomer): 4.75 eV

S; (dimer): 4.54 eV

AE, . = Ey - Egge

S; equilibrium geometry
(excimer)

AE, . =-16.58 kcal/mol == Strong hole — electron interaction




The case of catechol dimer

Conical intersection in catechol dimer: Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

@@
, ey

J\

AE., . = +25.23 kcal/mol AE., . = +24.66 kcal/mol AE., . = +21.14 kcal/mol

Results published in: A. Bende, A A. Farcas, A. Falamas, A. Petran, Phys. Chem. Chem. Phys., 2022, 24, 29165.




The case of catechol dimer

Conical intersection in catechol dimer: Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

AE., . = +10.66 kcal/mol AE., . =+11.20 kcal/mol AE., . = +7.39 kcal/mol

Results published in: A. Bende, A A. Farcas, A. Falamas, A. Petran, Phys. Chem. Chem. Phys., 2022, 24, 29165.




The case of catechol dimer

Conical intersection in catechol dimer:

Method: SF-TDDF/wB97X-D3/ma-def2-TZVPP

AE., . = +13.08 kcal/mol

Results published in: A. Bende, A A. Farcas, A. Falamas, A. Petran, Phys. Chem. Chem. Phys., 2022, 24, 29165.




Conclusions:

O,
O,
O,
O

Stronger intermolecular interaction energies between the monomers were found for the S, state
than for the S, state;

Dimer configurations in the S, electronic state prefer the perfect stacking geometry configuration
instead of shifted-stacking or H-bonded forms,;

The dimer-type conical intersection geometries are energetically more favorable than the
monomer-type Cl configurations;

The side fragments (OH groups) of the catechol can influence the conical intersection geometries
and their energetics,
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