
The creation and reconstruction of ultrashort (femtosecond or attosecond) laser pulses is an important 

field of basic research. However, a large range of applications also use such pulses (femtochemistry or 

ultrafast imaging for example), but all are based on physical processes, which cannot be resolved in 

space or time using other means of investigation. Since 

these pulses cannot be measured by conventional 

electronics, their characterization involves special 

techniques, one of them being FROG [1] (frequency 

resolved optical gating), which uses the pulse and a 

delayed replica of itself to create a spectrogram. The 

reconstruction method means the recovery of the 

amplitude and phase of the pulse from the FROG 

spectrogram. Here, inspired by recent studies [2,3], we 

employed a CNN (convolutional neural network) to 

recover the amplitude and phase of ultrashort pulses. 

Dataset generation 

a. Experimental FROG Traces 

FROG traces were acquired using the ultrashort laser 

pulses delivered by the AVESTA system delivering down 

to 40fs pulses duration with up to 1mJ energy at λ 

=800nm central wavelength [4]. The spectral phase and 

pulse duration of the laser pulses were measured by 

employing a FROG device. The experimental set-up is presented in Fig. 1. 

The output pulses are attenuated in order to achieve an energy no higher than 100 µJ. The beam 

diameter has around 8 mm after the compressor. By adjusting several parameters of the temporal 

compressor, such as the distance and angle of the grating as well as cutting the 3rd pass spectrum in 

various positions and with different slit widths, the FROG traces are recorded and saved for post-

analysis in order to train the artificial neural network. 

The optical stretcher of the AVESTA laser system provides a stretching factor of 5.94 ps/nm. The 

inter-grating distance is 550.00 mm for an initial 40nm bandwidth pulse stretched to 245ps. The 

temporal compressor that compensates for the group delay dispersion generated by the stretcher and 

the optical materials along the amplification chain has similar distance between the gratings. As a 

consequence, 1 mm variation of the inter-gratings distance in the compressor corresponds to roughly 

440fs additional pulse duration increase. The adjustment of the distance can be performed using a 

micrometer screw.  

It can be shown that the second order Taylor series coefficient for the spectral phase decomposition in 

the case of a double pass compressor has the form φ2=c L N
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, with the L the distance 

between the gratings along the normal direction, N the grooves density, c speed of light and β the 

diffraction angle at the central wavelength. In our case, this corresponds to:  φ2=3.54923*10
6
 fs
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 L/m, where L is expressed in meter (m) when N=1400lines/mm. So, 0.1% of the normal 

 

Fig. 2 Example of FROG trace measured and reconstructed using the FROG-FC device and associated Fast FROG Retrieval 

Software from Femto Easy. 

Fig. 1: The top view of the experimental layout 

used in the measurements. BD=beam dump, M1, 

M1, M2, M3, flat mirrors, AVESTA RAMPA is 

the laser system and the FROG-FC is the 

measurement device used. 

 



compressor length variation corresponds to 3549 fs
2
 Sec(β)

2
 additional phase variation. 

In this way the ranges of second phase in reach with the help of 0.1% compressor length tuning can be 

determined to be +/- 3500fs
2
. The value is beyond the measurement range of the FROG device used in 

our case, which is limited to a maximum of 200fs pulse duration measurements. This corresponds to a 

second order spectral phase smaller than 2500fs
2
 for a 40fs Fourier limited pulse duration. Example of 

experimental FROG trace and reconstructed pulse shape is shown in Fig. 2. 

b. Simulated FROG traces 

Experimentally it is time and resource consuming to generate a 

large set of FROG traces (~10
4
), therefore a computational model 

is used to generate simulated data sets. The code for the generation 

of datasets is written in Fortran90. We generate datasets by two 

methods, but we present here the results obtained with the first 

method only. The second method (which generates the phase 

randomly) was very recently developed and some preliminary 

results are under evaluation. The first method incorporates some 

parameters of the chirped pulse amplification system at the ELI-

RO facility, which are chosen to be in an experimentally viable 

range and determine the phase of the laser pulse. Specifically, for 

different grating distances and incidence angles of the compressor, 

the higher order terms in the Taylor expansion of the spectral phase are determined and consequently 

the phase itself. We also take into account the variation of the width of a glass piece introduced in the 

laser beam path. The spectral phase and the spectral amplitude (the width for the spectral amplitude 

ranges between 20 and 50 nm) define the pulse in frequency domain, while its inverse Fourier 

transform gives the field in time domain, which is in turn used to generate the FROG trace. The 

wavelength associated with the central frequency is 800 nm. The Fortran code outputs the FROG trace 

and the spectral amplitude and phase, necessary to train the CNN model. The amplitudes or the phases 

are used as labels in the training of the CNN. The generated dataset is splitted into training, validation 

and test sets (70%, 15%, 15%, respectively). The test set contains data samples not used in the training 

or validation process.  

In order to visually assess the behavior of the amplitude and the phase, we have written a Python 

program, which plots these quantities as a function of the parameters mentioned above. These 

parameters may be continuously varied through sliders in the program, as shown in Fig. 3. This 

program showed us that the phase varies on a wide range both in shape and value, being especially 

sensitive to the variation of the incidence angle. Changing the grating distance has moderate effect, 

while the thickness of the glass piece proved to have a minor effect on the phase. 

Recovery process using CNN 

The input to the CNN is a FROG trace along with 

the corresponding spectral amplitude or phase (the 

training data) and the output is the recovered 

amplitude or phase, generated by the CNN. A 

schematic representation of the process is in Fig. 4. 

The goal is to train the CNN (adjusting its 

parameters) in order to generate a correct amplitude 

or phase for pulses not used in the training process. 

These pairs of data (FROG traces and the 

corresponding amplitude or phase) are fed randomly 

to the CNN model and in mini-batches (we used 32 or 64 items per batch) to speed up the 

computations. The CNN is trained typically for a few hundreds or thousands of epochs (iterations) and 

the output of the CNN is compared to the input amplitude or phase through a loss function (MSE – 

mean square error or L1 loss) or training error (Fig. 5). The 

goal is to obtain a minimized loss function, therefore a good 

model (with adjusted parameters or weights) to reconstruct 

ultrashort laser pulses. The adjustment of the parameters is 

achieved through the back propagation method, where the 

Fig. 4. Schematic representation of the recovery 

process of the amplitude and phase of a pulse. A 

FROG image is sent through the layers of the trained 

CNN and the output is the phase or the amplitude. 

Picture from [2] 

 

Fig. 3 Snapshot of the program used 

to analyze the parameter influence 

on the phase and amplitude. 

Fig. 5. Typical training and validation losses 



gradient of the loss function is calculated with respect to the weights of the model and propagated 

backwards through the layers of the CNN model. The weights are adjusted according to the value of 

the gradient; practically the new weights are obtained by adding or subtracting the gradient from the 

old weight values, multiplied by the learning rate. In practice, we use a variant of the stochastic 

gradient descent algorithm, called Adam, which is an adaptive learning rate optimization algorithm to 

perform the back propagation and the weight adjustment. The learning rate is the step at which the 

adjustments of the weights are performed. We also calculate the validation loss, which is an error 

function obtained for data samples not used during the learning phase, in order to assess the validity of 

our model. This is helpful also to spot overfitting the data, which is often encountered during the 

training of neural networks.  

CNN model architecture 

Several CNN architectures were built during this phase of the project; however here we present only 

the most used one. This is a Densenet-BC [5] architecture, which was modified by us to meet the goal 

of the project. A Densenet architecture refers to a densely connected layer structure of a dense block as 

depicted in the Fig. 6, where each layer is 

connected to all subsequent layers in the block. 

This connection pattern improves the 

information flow between layers. A layer can 

output several feature maps, that is a version of 

the input image processed by some operation 

like convolution for example, where the original 

input is convoluted through a kernel, specialized 

to extract some features. In a single dense block 

the n
th
 layer receives all the feature maps of the 

preceding layers by concatenating them into a 

single tensor. The number of feature maps 

entering the n
th
 layer is g0 + g(n-1), and is 

controlled by the g growth rate, which is the 

number of feature maps outputted by a single layer. Here g0 is the number of channels in the input 

layer. The number of input feature maps can be large for most of the layers, therefore a bottleneck 

layer (essentially a 1x1 convolutional layer) is introduced before the concatenation to reduce the 

number of input feature maps, which aids computational effectiveness. The B in the Densenet-BC 

refers to this bottleneck layer. The concatenation operation itself is usually a composite operation of 

convolution and batch normalization operations. However, the concatenation requires that the feature 

maps have the same size. Therefore in a single block all the feature maps have the same size, and the 

down-sampling is performed by transition layers, which connect several dense blocks. The transition 

layers are composed of several sublayers: batch normalization, convolutional and averaging. The 

averaging layer is responsible for down-sampling the feature maps. The number of feature maps can 

further be reduced at transition layers to improve model compactness. If a dense block has m feature 

maps the transition layer will generate c*m feature maps, where 0 < c < 1. This compression procedure 

is referred to in the model name by the letter C. If both bottleneck and compression layers are present, 

the model is Densenet-BC. Our version of the Densenet-BC architecture keeps the structure of the 

dense blocks and the transition layers, but changes the layers preceding and following the block 

structure. The dense blocks are preceded by two convolutional layers (the first one receives the 

unaltered FROG image) with kernel sizes of 11 and 7, respectively. The block structure is followed by 

a batch normalization layer and two fully connected linear layers. The last fully connected layer 

outputs the amplitude or phase array and has a size equal to k if the input image is of kxk size in pixels. 

Reconstructed pulse shapes and model performance 

Fig. 6. Densenet architecture. Above is depicted a dense block 

and below is a typical arrangement of the blocks connected by 

transition layers. [5] 



Advised by the combined knowledge about experimental 

and simulated FROG trace properties, as well as the 

mechanism of CNN reconstruction process, we adopted 

the strategy to generate datasets gradually, that is from 

smaller sets to larger sets and from varying one 

parameter to two or more parameters varying at the same 

time. Below we show in Fig. 7 some results for FROG 

traces not seen by the model in the training or validation 

process. Since the angle most influenced the phase, we 

generated first a set of 600 data items varying only the 

angle, which further was split into training, validation 

and test sets. The angles (a) were set to have values in 

the range [-0.3, 0.3] radians. We set the width of the 

spectral amplitude w = 20 nm, the glass thickness g = 0 

m and the grating distance L = 300 m for this dataset. 

We show some results obtained using this dataset in Fig. 

7, which shows a nice reconstruction of both the phase 

and the amplitude, especially for frequencies around the 

central frequency. However, given the reduced size of 

the dataset, the reconstruction is not so good for all data 

in the test set as we show such an example in Fig. 8. 

Since the amplitude shows a smaller variability than the 

phase, in both cases its reconstruction is correct. In Fig. 9 

we show examples of results when both the grating distance [0, 300] m and 

the glass thickness [0, 1000] m were varied for an incident angle set at 0.1 radians or 100 mrad, and 

for three values of the spectral amplitude width [20, 35, 50] nm. The size of the dataset before splitting 

was of 4530 items. Below we 

show some results for the 

reconstruction of the spectral 

phase obtained for this dataset. 

Again, the reconstruction of the 

phase proved to be much more 

difficult than the amplitude: we 

have cases where the 

agreement with the original 

phase is very good, but also 

where some discrepancies may 

be observed. For all varying 

parameters the overall datasets 

can grow very large even for a 

relatively small number of 

values for the individual parameters, therefore we decided to generate datasets randomly, for which 

some preliminary results are under evaluation, but the model still needs some fine-tuning. 
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Fig. 9. Examples of FROG traces and corresponding reconstructed phases 
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Fig. 7. Reconstructed 

amplitude and phase 

compared to the 

original ones. 

 

 

Fig. 8. Reconstructed 

amplitude and phase 

compared to the original 

ones. 


