
In the present reporting period 2022 we implemented the “random phase” data generation

method. This step was necessary for three reasons: (1) when the training traces were obtained

based on the experimental parameters, for all varying parameters the overall datasets can

grow very large even for a relatively small number of values for the individual parameters; (2)

there was a need for much more variate pulse shapes and FROG traces for the training

process; (3) the experimental FROG traces are better resembled with random phases.

1. We employed the Densenet-BC model on a randomly generated dataset of 40 000

samples, which was split into training, validation and test sets [80%, 10%, 10%]. Here we

focused on the recovery of the phase, since this process proved to be the most difficult part.

Early running tests showed an unsatisfactory generalization or overfitting behavior of the

model, therefore we proceeded to fine-tuning the different parameters of the model, while the

overfitting behavior was tackled by several regularization techniques.

One important hyper parameter of deep learning models is the learning rate, which sets how

fast the model will learn, it sets the step of the stochastic gradient descent algorithm. We

experimented with different learning rates, and settled for a variable learning rate, where we

automatically change its value during a single training epoch. We also tested the model for

different batch sizes of the input data, for different growth rate, depth (number of layers)

and compression rate of the Densenet model. Also, different weight and bias initialization

methods were tested for the convolution and other layers of the network. The error between

the predicted and original phases was calculated for different loss functions like L1Loss,

MSE or custom functions.

Overfitting refers to the over-learning of the training set, when the details and noise in the

training data are learned to the extent that the model reproduces almost perfectly the learning

data, but does not generalize well, and reconstruction fails for new data. Overfitting may

occur due to the oversized capacity of a model. There are several techniques to handle

overfitting, here we mention only a few of them. Dropout is a technique that randomly sets

neurons in a layer to zero according to some probability, therefore reducing the capacity of

the model. Another technique is called weight-decay, which adds a small penalty to the loss

in order to avoid overfitting. Weight decay helps to keep the weights of the model as small as

possible, avoiding their growth out of control. Beside these methods we also implemented and

tested early stopping. We also tried the most straightforward method to tackle overfitting, by

reducing the capacity of the model using a fewer number of layers and neurons. These testing

processes led to a model, which provided a testing set error (L1Loss) of 1.32 in case of the

phase reconstruction. In Fig. 1 we show an example of a FROG trace and the predicted and

generated phases obtained by propagating the FROG image through our deep network. The

agreement is good, especially in the region, where the amplitude shows significant values,

which is generally true for a large percentage of the test set.

2. Ambiguity removal proved to be essential for both data generation methods (parametric

and random). While earlier we obtained relatively good results in the case of the random

model for a dataset of 40000 samples, the parametric model still showed an overfitting

behavior. This issue was solved by removing the time reversal ambiguity, which means that

both E(t) and E(-t) may lead to the same FROG trace.

3. When both data generation models seemed to be ambiguity free at the time of reporting, we

generated larger datasets in both cases and trained separately the neural network for these sets

in order to decrease the error on the test set even further and consequently to obtain a better

generalizing network. We generated around 120 000 samples with each model, split into

training, validation and test subsets [80%, 10%, 10%]. The training time increases drastically

with the size of the inserted FROG images, so the final image size was chosen to be 128x128

pixels, which is the size recquested by the most common classical recovery algorithms too.

Each FROG image is preprocessed before entering the convolutional neural network such that

it has zero mean and a standard deviation of 1 (std = 1). The neural network was trained for

several hundred epochs, using a variant of the stochastic gradient descent algorithm, named

Adam. Ideally, these optimization algorithms set the many parameters of the network in such

a way that the training error between the recovered and original spectral electric fields is

minimized.

4. As a next step we inserted white Gaussian noise into the FROG images with zero mean

and a std = 0.1. After the training of the neural network is completed we test the recovery

performance on the test set [~12000 samples]. In both cases we calculate an average test error

for three cases: without noise on the images, with a noise equal to the noise level used during

training (std = 0.1) and with a noise level double than that used for training. The obtained

error values are summarized in the table below:

Table 1: Average reconstruction errors for the parametric and random model and for different noise levels

inserted into the FROG traces.

 Reconstruction error No noise Noise (std = 0.1) Noise (std = 0.2)

L1Loss (Parametric data) 0.078 0.07732 0.15421

L1Loss (Random data) 0.03274 0.03175 0.04491

The table shows that the highest error is obtained for the highest noise level for both models

and that the neural network performs almost equally well for the cases with no noise and for a

noise level as high as the level used during training. In Fig. 2 we show a few reconstructed

spectral amplitudes and phases, first for the parametric model. Even for various phases, Fig. 2

shows a quite good reconstruction where the spectral amplitude is meaningful. Fig. 3 presents

a FROG trace with various noise levels on it and the corresponding reconstructed spectral

amplitude and phase. Although for high noise levels the reconstruction of the spectral phase

and amplitude is not as good as for lower noise levels, the agreement in the region where the

amplitude has significant values is quite good. This is indeed signaled also by the higher

reconstruction error in this case, which can be seen along the plotted reconstructed quantities.

A similar behavior of the reconstructed spectral amplitude and phase is observed for our

second data generation model, the random phase model. Fig. 4 shows several samples with no

noise on the FROG traces and the corresponding reconstructed and original spectral

quantities. One can see a good agreement between the reconstructed and original spectral

quantities in the domain of significant aplitude values. We plotted samples with

reconstruction errors above and below the average test error. Fig. 5 shows the results when

different noise levels are inserted on a FROG trace. At low noise levels the reconstruction is

quite good, but for the highest noise level we see a poorer reconstruction, confirmed also by

the higher error value in this case.

We also measured the reconstruction time for a single FROG sample, which is on a

millisecond scale.

5. These results show that our model is robust against noisy FROG traces, which is

encouraging from the perspective of reconstructing experimental FROG traces. On Fig 6 we

applied the neural network trained with simulated samples on an experimental FROG trace,

obtained from the partner at the ELI-NP. We found that the random model performed better

for this particular FROG trace. As a reference, we also included in Fig. 6 the reconstructed

spectral amplitude and phase from the commercial software, used at ELI-NP (Femto Easy),

based on classical, reconstruction algorithms. However, for a better reconstruction, we need to

simulate samples with a distribution very similar to the experimental one. A promising area

for solving this issue is the use of Generative Adversarial Networks (GANs), which are deep

convolutional network with the ability to sintesize such datasets. Transfer learning may also

be used to train our network in order to reconstruct experimental data, but in this case we need

enough experimental samples.

Fig. 1. Left: FROG image. Right: the green

line is the predicted phase, while the blue

line is the original phase. The original

amplitude is shown here just to assess the

region, where the pulse has a significant

electric field.

Fig. 2. Parametric model: Black

line with circles: original spectral

amplitude; Red dashed line with

circles: reconstructed spectral

amplitude; Black circles: original

spectral phase; Green circles:

reconstructed spectral phase.

Fig. 3. Parametric model (with

noise): Black line with circles:

original spectral amplitude; Red

dashed line with circles:

reconstructed spectral amplitude;

Black circles: original spectral

phase; Green circles: reconstructed

spectral phase.

Fig. 4. Random model: Line and

circle colors the same as for the

parametric model.

Fig. 5. Random model (with noise):

Line and circle colors the same as for

the parametric model.

Fig. 6. Experimental FROG trace and the CNN

reconstructed spectral phase (green) and

amplitude (red). Black circles and lines show the

reconstructed spectral quantities by the Femto

Easy commercial software.

