
In the present reporting period 2022 we implemented the “random phase” data generation 

method. This step was necessary for three reasons: (1) when the training traces were obtained 

based on the experimental parameters, for all varying parameters the overall datasets can 

grow very large even for a relatively small number of values for the individual parameters; (2) 

there was a need for much more variate pulse shapes and FROG traces for the training 

process; (3) the experimental FROG traces are better resembled with random phases. 

1. We employed the Densenet-BC model on a randomly generated dataset of 40 000 

samples, which was split into training, validation and test sets [80%, 10%, 10%]. Here we 

focused on the recovery of the phase, since this process proved to be the most difficult part. 

Early running tests showed an unsatisfactory generalization or overfitting behavior of the 

model, therefore we proceeded to fine-tuning the different parameters of the model, while the 

overfitting behavior was tackled by several regularization techniques. 

One important hyper parameter of deep learning models is the learning rate, which sets how 

fast the model will learn, it sets the step of the stochastic gradient descent algorithm. We 

experimented with different learning rates, and settled for a variable learning rate, where we 

automatically change its value during a single training epoch. We also tested the model for 

different batch sizes of the input data, for different growth rate, depth (number of layers) 

and compression rate of the Densenet model. Also, different weight and bias initialization 

methods were tested for the convolution and other layers of the network. The error between 

the predicted and original phases was calculated for different loss functions like L1Loss, 

MSE or custom functions. 

Overfitting refers to the over-learning of the training set, when the details and noise in the 

training data are learned to the extent that the model reproduces almost perfectly the learning 

data, but does not generalize well, and reconstruction fails for new data. Overfitting may 

occur due to the oversized capacity of a model. There are several techniques to handle 

overfitting, here we mention only a few of them. Dropout is a technique that randomly sets 

neurons in a layer to zero according to some probability, therefore reducing the capacity of 

the model. Another technique is called weight-decay, which adds a small penalty to the loss 

in order to avoid overfitting. Weight decay helps to keep the weights of the model as small as 

possible, avoiding their growth out of control. Beside these methods we also implemented and 

tested early stopping. We also tried the most straightforward method to tackle overfitting, by 

reducing the capacity of the model using a fewer number of layers and neurons. These testing 

processes led to a model, which provided a testing set error (L1Loss) of 1.32 in case of the 

phase reconstruction. In Fig. 1 we show an example of a FROG trace and the predicted and 

generated phases obtained by propagating the FROG image through our deep network. The 

agreement is good, especially in the region, where the amplitude shows significant values, 

which is generally true for a large percentage of the test set. 

2. Ambiguity removal proved to be essential for both data generation methods (parametric 

and random). While earlier we obtained relatively good results in the case of the random 

model for a dataset of 40000 samples, the parametric model still showed an overfitting 

behavior. This issue was solved by removing the time reversal ambiguity, which means that 

both E(t) and E(-t) may lead to the same FROG trace.  

3. When both data generation models seemed to be ambiguity free at the time of reporting, we 

generated larger datasets in both cases and trained separately the neural network for these sets 

in order to decrease the error on the test set even further and consequently to obtain a better 

generalizing network. We generated around 120 000 samples with each model, split into 

training, validation and test subsets [80%, 10%, 10%]. The training time increases drastically 

with the size of the inserted FROG images, so the final image size was chosen to be 128x128 



pixels, which is the size recquested by the most common classical recovery algorithms too. 

Each FROG image is preprocessed before entering the convolutional neural network such that 

it has zero mean and a standard deviation of 1 (std = 1). The neural network was trained for 

several hundred epochs, using a variant of the stochastic gradient descent algorithm, named 

Adam. Ideally, these optimization algorithms set the many parameters of the network in such 

a way that the training error between the recovered and original spectral electric fields is 

minimized. 

4. As a next step we inserted white Gaussian noise into the FROG images with zero mean 

and a std = 0.1. After the training of the neural network is completed we test the recovery 

performance on the test set [~12000 samples]. In both cases we calculate an average test error 

for three cases: without noise on the images, with a noise equal to the noise level used during 

training (std = 0.1) and with a noise level double than that used for training. The obtained 

error values are summarized in the table below: 

Table 1: Average reconstruction errors for the parametric and random model and for different noise levels 

inserted into the FROG traces. 

 Reconstruction error  No noise Noise (std = 0.1) Noise (std = 0.2) 

L1Loss (Parametric data) 0.078 0.07732 0.15421 

L1Loss (Random data) 0.03274 0.03175 0.04491 

The table shows that the highest error is obtained for the highest noise level for both models 

and that the neural network performs almost equally well for the cases with no noise and for a 

noise level as high as the level used during training. In Fig. 2 we show a few reconstructed 

spectral amplitudes and phases, first for the parametric model. Even for various phases, Fig. 2 

shows a quite good reconstruction where the spectral amplitude is meaningful. Fig. 3 presents 

a FROG trace with various noise levels on it and the corresponding reconstructed spectral 

amplitude and phase. Although for high noise levels the reconstruction of the spectral phase 

and amplitude is not as good as for lower noise levels, the agreement in the region where the 

amplitude has significant values is quite good. This is indeed signaled also by the higher 

reconstruction error in this case, which can be seen along the plotted reconstructed quantities. 

A similar behavior of the reconstructed spectral amplitude and phase is observed for our 

second data generation model, the random phase model. Fig. 4 shows several samples with no 

noise on the FROG traces and the corresponding reconstructed and original spectral 

quantities. One can see a good agreement between the reconstructed and original spectral 

quantities in the domain of significant aplitude values. We plotted samples with 

reconstruction errors above and below the average test error. Fig. 5 shows the results when 

different noise levels are inserted on a FROG trace. At low noise levels the reconstruction is 

quite good, but for the highest noise level we see a poorer reconstruction, confirmed also by 

the higher error value in this case. 

We also measured the reconstruction time for a single FROG sample, which is on a 

millisecond scale. 

5. These results show that our model is robust against noisy FROG traces, which is 

encouraging from the perspective of reconstructing experimental FROG traces. On Fig 6 we 

applied the neural network trained with simulated samples on an experimental FROG trace, 

obtained from the partner at the ELI-NP. We found that the random model performed better 

for this particular FROG trace. As a reference, we also included in Fig. 6 the reconstructed 

spectral amplitude and phase from the commercial software, used at ELI-NP (Femto Easy), 

based on classical, reconstruction algorithms. However, for a better reconstruction, we need to 

simulate samples with a distribution very similar to the experimental one. A promising area 

for solving this issue is the use of Generative Adversarial Networks (GANs), which are deep 



convolutional network with the ability to sintesize such datasets. Transfer learning may also 

be used to train our network in order to reconstruct experimental data, but in this case we need 

enough experimental samples. 

 

 

 

 

Fig. 1. Left: FROG image. Right: the green 

line is the predicted phase, while the blue 

line is the original phase. The original 

amplitude is shown here just to assess the 

region, where the pulse has a significant 

electric field. 

Fig. 2. Parametric model: Black 

line with circles: original spectral 

amplitude; Red dashed line with 

circles: reconstructed spectral 

amplitude; Black circles: original 

spectral phase; Green circles: 

reconstructed spectral phase. 

Fig. 3. Parametric model (with 

noise): Black line with circles: 

original spectral amplitude; Red 

dashed line with circles: 

reconstructed spectral amplitude; 

Black circles: original spectral 

phase; Green circles: reconstructed 

spectral phase. 

Fig. 4. Random model: Line and 

circle colors the same as for the 

parametric model. 



 

 
 

Fig. 5. Random model (with noise): 

Line and circle colors the same as for 

the parametric model. 

Fig. 6. Experimental FROG trace and the CNN 

reconstructed spectral phase (green) and 

amplitude (red). Black circles and lines show the 

reconstructed spectral quantities by the Femto 

Easy commercial software. 


