HIGHER LEVEL SINGLET-TRIPLET EXCITED State Relaxation dynamic pathways for Acetophenone and Benzophenone Molecular Systems

Attila Bende

Molecular and Biomolecular Physics Department, National Institute for R&D of Isotopic and Molecular Technologies, Donat Street, 67-103, RO-400293 Cluj-Napoca, Romania **1. Theoretical Background**

2. Methods

3. Vertical Excitation Energies

4. Geometry Relaxation

5. Conclusions

The topology of potential energy surfaces around the conical intersection point

T. Suzuki – RIKEN Institute

In the simplest case one can calculate excited state energies as energy differences of single-reference calculations.

```
\Delta E(ex) = E(ex.s.) - E(gr.s.)
```

This generally can be done:

- For states of different symmetry (A', A", etc.)
- For states of different multiplicity (singlet, triplet)
- Possibly for states that occupy orbitals of different symmetry

Why do we need to use multiconfiguration reference methods?

The problem of the electron correlation:

- Static electronic state degeneracy, long-range effect
- Dynamic electron pair correlation (exchange effects), short-range effect

Ground state: Large Homo-Lumo gap, double occupied states, can be easily treat with single reference method

Excited state: Small energy difference between electronically excited states (problem of the bond breaking),

Special cases of avoided-crossing or conical intersection, BUT

The dynamic correlation is also important !!!

Excited state configurations:

For each electron configuration corresponds a certain Slater determinant

⇒ Needs to consider different Slater determinants for different excited one-electron configuration.

Configurations can be expressed as Slater determinants in terms of molecular orbitals. Since in the nonrelativistic case the eigenfunctions of the Hamiltonian are simultaneous eigenfunctions of the spin operator it is useful to use **configuration state functions** (CSF-s) – spin adapted linear combinations of Slater determinants, which are eigenfunctions of S²

CASSCF

Choosing the active space:

10 active electrons (8 π + 2 lone pair electrons)

5 occupied + 3 virtual orbitals

Active space: (10,8)

Software: Molpro 2012.1

Basis set: def2-tzvp \rightarrow 4*f* on heavy atoms and 2*p* on H atoms

Methods: State-averaged MCSCF (for geometry, CI)

Multi-State CASPT2

MRCI with Davidson correction

LT-DF-LCC2

EOM-CCSD

When we are interested in the photochemistry and photophysics of molecular systems the Potential Energy Surface (PES) we have to be explored not only in the Franck-Condon (FC) region but also along distorted geometries. Minima, transition states, and conical intersections need to be found (gradients for excited states are needed).

Acetophenone

Table 1. Vertical excitation energies (and their oscillator strength in parenthesis) for the two lowest excited states of AP

	S_1 (eV)	S_2 (eV)
AP	$(n\pi^*)$	$(\pi\pi^*)$
SA-CASSCF(10,8)	4.52 (0.0000)	5.60 (0.0091)
MS-CASPT2(10,8)	4.55	4.85
MRCI (D) (10,8)	4.65	4.83
EOM-CCSD	4.23	(0.0007) 4.97 (0.0077)
LT-DF-LCC2	3.81	4.90
Exp.	4.54	5.39

Low-lying excited-states of Acetophenone Section 4.: Geometry relaxation

The triplet relaxation pathway

Experimental evidence for:

A. Absorption: M. Berger, C. Steel, J. Am. Chem. Soc. 97(17), 4817 (1975)

$$S_0 \rightarrow S_1 \quad v_{exp} = 273 \text{ nm (4.54 eV)} \quad v_{theor} = 274 \text{ nm (4.52 eV)}$$

 $S_0 \rightarrow S_2 \quad v_{exp} = 230 \text{ nm (5.39 eV)} \quad v_{theor} = 221 \text{ nm (5.60 eV)}$

B. Fluorescence: R. D. Vanselow, A. B. F. Duncan, J. Am. Soc. Chem., 75, 830 (1953)

 $v_{exp} = 23600 \text{ cm}^{-1} (2.92 \text{ eV})$ S₁ (carbonyl) = 3.43 eV

C. Phosporescence: M. Koyanagi, R. J. Zwarich, L. Goodman, J. Chem. Phys., 56, 3044 (1972) $v_{exp} = 26100 \text{ cm}^{-1} (3.24 \text{ eV})$ $T_1 (\text{carbonyl}) = 3.04 \text{ eV}$

Benzophenone

Ketone group

Diphenyl group

Table 2. Vertical excitation energies (and their oscillator strength inparenthesis) for the two lowest excited states of Benzophenone

	S ₁ (eV)	S ₂ (eV)
BP	(nπ*)	(ππ*)
SA-CASSCF(16,12)	4.56	5.75
	(0.0019)	(0.0063)
MS-CASPT(16,12)	4.49	4.83
	(0.0009)	(0.0042)
MRCI(D)(16,12)	4.60	5.04
	(0.0014)	(0.0050)
EOM-CCSD	4.11	5.04
	(0.0011)	(0.0086)

Section 4.: Geometry relaxation

The triplet relaxation pathway

S₀

רומטובזנכוונכ

Benzophenone:

- ➤ The vertical excitation has low efficiency (with small oscillator strength) in case of S₁ first singlet excited state for both acetophenone and benzophenone molecular structures. → One needs to excite at least to S₂ or S₃ excited state levels.
- The $S_1 \times S_2$ conical intersection point is difficult to be reached from the S_2 equilibrium structure ($\Delta E \approx 1.7 \text{ eV}$).
- The S₂ → T₃ intersystem crossing point is energetically close to the S₂ equilibrium structure both for acetophenone and benzophenone molecular structures.
 => Singlet triplet transition is a feasible relaxation mechanism.
- The well-known $S_1 \rightarrow T_1$ intersystem crossing point is also present in the relaxation scheme. \rightarrow Beyond the pure singlet relaxation pathway the singlet triplet singlet relaxation pathway is also feasible.
- While the singlet excited state level is quite similar, there is significant differences between the triplet states of the acetophenone and benzophenone molecular structures.

Thank you for your attention.