Romana

Presentation

The research proposed in this project will be focused on the knowledge and method development capable to measure and evaluate the coupling the physical, chemical and biological processes from algae and plants. These researches will expand the natural isotope tracer method to measure the natural isotopic content of elements implicated in biotransformations and to understand the implications and the role of these measurements for the new scientific knowledge accumulation and for the opportunities of the large scale applications. Will be investigated cyanophytes that are capable of photosynthesis accompanied by oxygen release (oxygenic photosynthesis) and chlorophytes that are capable of autotropy, a process in which the energetic source is light, CO2 is the carbon source of the cell, and H2O is hydrogen donors, as algae, and the vegetable with the vegetation short time, grown in greenhouse, containers or vegetation chamber.

The methods proposed are based on the results of the world and national advances researches from the last years, which point out that the isotopic composition for materials frequently of interest in global changes studies: waters, greenhouse gases, and biological materials varies in large range and the natural isotopic tracers method is the one of the modern and refined study method for the atmosphere-hydrosphere- -biosphere interactions. In this proposed project the studies will approach the theoretical model for isotopic fractionation in plants and will verify the hypothesis concerning with the isotope of endogen water and CO2, isotopically light water as factor of the plant resistance at ultraviolet light stress, the dependence of conversion chlorophyll a to chlorophyll b on the water isotope, algal bloom and water isotope, water use efficient and isotope composition of CO2, geographical site as the factor in the isotopic content from water and organic matter of plant tissues. As a starting point, note that precipitation and atmospheric gases, such as CO2, exhibit spatial and temporal variation, which are due to the phenomena that occur in space and time in different conditions. The knowledge of the isotopic variability is very important to elaborate the work, harvest and analytical strategies.

The approaches of research carry out on two ways; one is the theoretical approach for to develop the base of the investigation meteorology and another is the development of the analytical methodologies needs to validate the theoretical models. The research will focus on four sub-elements:

1.      Molecules, pathways and processes for natural labeling of plants.

2.      Analytical tools of investigation.

3.      Determinism approach of the isotopic discrimination on plants.

4.      Holistic approach of the natural isotopic abundances in plants and applicability possibilities a large-scale.

1.      The first sub-element of the project will realize the first two objectives and will respond to the question: how does natural variation in stable isotopes from plants come about? These will be realized by the following:

        The analysis of the cycles of the water, oxygen and carbon in nature from isotopic point of view.

        The identification of the processes which occur along the pathways in the natural cycles and which lead to isotopic fractionations.

        The analysis of the isotopic distribution and the specific ranges of the natural isotopic concentration from the stuffs of interest for the isotopic studies in vegetables.

        The identification of the exogenous (temperature, humidity, light in photosynthesis and nutrients for the plants growing, and the presence of pollutants gases in atmosphere) that induce the change in isotope concentration from plants.

        The study of isotopic effects of physical and chemical processes.

        The study of the isotopic fractionation sources of the biological processes (relationship causes-isotopic fractionation effects in photosynthesis, respiration and another biochemical reaction) at which the water and CO2 participate as input or output in algae and plants with short vegetation time.

        For the three tracers will be establish the link between the isotope fractionation processes.

(2). The developing of the analytical methods, design and execution of experimental stall will be realized in the second sub-element of study. The following tasks will be made;

        The adaptation of the classical standardized methods (spectrophotometry, chromatography, mass spectrometry) at the needs of experiments.

        The development of modern, computational methods for the automatically recording of climatic indicators from greenhouse.

        The development of sampling, storage, extraction and preparation for isotopic measurements from water, CO2 and organic matter of algae suspension, vein and tissue of plant leaf, stem.

        The experimental stall will be realized in the conditions needed of research (the elimination of all risk factors which should disturb the isotopic signal). The lettuce and tomato crops and the algae (cyanobacteria and green algae) will be grown.

(3). The developing of the theoretical models will be realized in the third sub-element of study.

         MODELLING OF THE ISOTOPE ENRICHMENT OF LEAF WATERT he model will be based on the interaction between water uses longitudinally within the xylem, and uses laterally through vein lets into the lamina mesophyll, where moisture leaves the leaf through transpiration, from isotopically point of view.

         MODELLING OF THE CARBON AND OXYGEN ISOTOPE DISCRIMINATION OF CARBON DIOXIDE DURING PHOTOSYNTHESIS AND RESPIRATION. The model will be developed for oxygen isotopes and for carbon isotope composition. The isotopic composition for oxygen reflects the large flux of CO2 that diffuses into leaves (light reactions) or diffuses out of the leaf (dark reactions) is isotopically equilibrated with leaf water via the catalytic activity of carbonic anhydrase.

         ANALYTICAL MODEL FOR WHOLE-LEAF POTENTIAL ELECTRON TRANSPORT RATE. The model is important in studies in which the effects of diffuse light fraction on gas exchange are of interest (few studies suggested that the vertical profile of d13C, d18O, d2H of leaf tissue mimics irradiance gradients, but the cause underlying the relationship between d13C of leaves and irradiance and stomatal conductance is in controversies).

(4).The holist approach of study about the natural isotope content in plants will be based on the unitary processing of the experimental data and their correlative analyze for plant as the unitary system. The work hypothesis will be verified and the heuristic model for isotope discrimination in plants and algae will be developed.

 

 

Objectives

The general objectives and activities of this project are in sphere of the Thematic Fields S/T, 11, Basic sciences: mathematics, physics, chemistry, and biology.

1        The development oh the advances scientific fields and methods capable to measure and evaluate the coupling of physical (isotopic fractionation as the nuclear process), chemical (biosyntheses) and biological processes (photosynthesis, respiration).

2        The obtaining of the new scientific knowledge, which cannot be provided with the classical study methods, for to verify the new scientific hypothesis and concept, by developing the multiple, natural, isotopic tracers method, as the new work tool, with the high resolution.

3        The extent of the application field of the natural isotopic tracers in biology through the new knowledge accumulation concerning to the implications and role of isotopic measurements in sciences and practical applications.

The specific objectives are the following:

1        Identify and initially characterize natural processes that affect the isotopic content of hydrogen, oxygen and carbon at the mezzo-scale level.

2        To understand the mechanisms and pathways of the natural isotopic labeling of vegetation as the one element from atmosphere-soil-biosphere continuum in order to obtain advance knowledge about the vegetation response to the abrupt climatic changes and agronomic practice.

3        To develop the mass spectrometry method to determine the hydrogen, oxygen and carbon isotopic rates from biomaterials and to develop the operational methods for the measurements and recordings of the climate, chemical and biological indicators.

4        The consistent and systematic measurements of the isotopic contents, chemical and biological indicators, for the water, CO2 and organic matter from algae and plants with the short vegetation time (vegetable) grown on the controlled experimental support.

5        To develop the theoretical models for the isotopic transport in plants (H2O and CO2) and the plant irradiance role in relation with the isotopes contents. The verification of the theory by measurements.

6        To obtain the new knowledge concerning to the role of plants isotope content, as the scientific support for the development of the scientific understanding and for the elaboration of strategies for the large scale applications.

The measurable objectives are

1.       To analyze the natural of hydrogen, oxygen and carbon in nature from isotopic point of view (the identification of biomaterials and its isotopic range in nature, the pathways of matter movement, the coupling of the physical and bio-chemical processes, causes and isotopic fractionation effects, the quantifying of the isotopic fractionation factors, all information being the support for theoretical and experimental approach).

2.       The development of the methodologies of sampling, storage and preparation for isotopic measurements.

3.       The adaptation of the classical analyzes methods (spectrophotometry) of the biological and chemical indicators to the needs of study.

4.       The development of the automatic recording method of the climate data.

5.       The development of the mathematical formalism for the theoretical models.

6.       The obtaining of the experimental data (isotopic, chemical, biological) for the algae (cyanobacteria and green algae) and plants (lettuce and tomato) growth in controlled, different conditions.

7.       The unitary experimental data processing, the correlative analyze of experimental data.

8.       The evaluation of the plants isotopic response to the environmental factors changes.

9.       The verifying the hypothesis concerning to the isotope content in plants.

10.   The elaboration of models for the isotopic incorporation in plants.

 

 

Activities

Stage I

Researches concerning to study of the natural isotopic labelling process for it use as the bio-indicators for plants./ Documentation and study.

The analyses of water, oxygen and carbon cycles from isotopic points of view.

Study of natural abundance distributions of isotope hydrogen, oxygen and carbon in natural medium. (range and correlation diagrams).

Exogene conditions and factors that lead the biochemical reactions. (Light and nutrients for plants growth

Documentary and defining of functions for informatics' system; analyze regarding the methods for the recording of physics parameters needed in experimentations.

 

Stage II

Analyze of the sources of variations in isotope composition of hydrogen, oxygen and carbon in vegetal medium (physical, chemical and biochemical processes and isotopic fractionations).

The study of the isotopic effects in physical and chemical processes.

Biological processes in plants, for which the water and CO2 participate as input and output, and the isotopic effects associated (photosynthesis, respiration and enzymatic reactions in plants)

 

Stage III.

Development of concept and analytical methods for study of the natural isotope tracers in vegetal medium.

The analytical methods for isotopic measurements (substantiation of sampling and preparation samples for isotope measurement in biological compounds; the determination of needs for the isotopic measurements performance in plants).

Proposal of strategies and methods for the chemical and biological indicators analyses from algae. Selection of algae stems, experimental adequate, based on the biomass accumulation and assimilators pigments compositions.

Methods for analyses of physics indicators, chemical indicators and biological for plant with vegetation short time.

Defining the data base structure. Development of model for system status design.

 

Stage IV.

The determinist approach of isotopic discrimination in vegetal medium (theoretical models for the isotopic content prediction in plants and quantitative interpretation of isotopic data).

Realization of experimental stalls for plants and green algae, and obtaining the experimental data.

Modelling of the isotope enrichment of leaf water (hydrogen and oxygen isotopes).

Modelling of the carbon and oxygen isotope discrimination of carbon dioxide during photosynthesis and respiration.

Analytical model for whole-leaf potential electron transport rate

 

Stage V.

Holist approach of the isotopic fractionation in plants.

The analyses of chemical, biological and isotropic data in cyanobacteria and plants.

Analyses of the variation ranges and variability for environmental stable isotope content in plants.

Correlation of izotopic versus chlorophil a/chlorophil b, carotens, chemical and endogenous factors.

Developing of the conceptual model about the isotope incorporate in plants

 

 

Rezults

 

 

 

 

 

Disemination

1. Web page

2. Papers:

3. Comunication:

 

 

Team

Project coordinator - National Institute for Research and Development for Isotopic and Molecular Technologies, Cluj-Napoca

Project manager: Dr. FEURDEAN LUCIA, Fizician

Researchers: Dr. ALMASAN VALER Inginer chimist

Dr. FEURDEAN VICTOR, Fizician

Dr. CUNA CORNEL, Fizician

Dr. CUNA STELA, Fizician

Drd. BALAS GABRIELA, Fizician

Drd. LAZAR MIHAELA DIANA, Chimist

LEUCA MOISE, Inginer electronist

Technicians: BUJOR PETRU, Tehnician principal

PETRICA NICOLETA, Tehnician principal

PUSCAS ROMULUS, Tehnician principal

 

Partner 1 - University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca

Project coordinator: Prof. Dr. APAHIDEAN AL SILVIU, Legumicultura

Researchers: Prof. Dr. APAHIDEAN MARIA, Legumicultura

Prof. Dr. CRIVEANU HORIA, Fizician

Conf. Dr. LUJERDEAN AUGUSTA, Chimist

Sef lucrari BUNEA ANDREEA, Chimist

Drd. CSOK ERSZBETH, Legumicultura

FICIOR DIANA, Legumicultura

Drd. SINGUREAN VALENTIN, Legumicultura

Drd. CENARIU DIANA, Legumicultura

Drd. MOLDOVAN GELU Executant, Legumicultura

APAHIDEAN AL.IOAN, Student Horticultura

RUSU FLORIN, Student Horticultura

BACIU ADRIANA EXECUTANT, Masterat Legumicultura

SAMOILA CARMEN, Masterat Legumicultura

 

Partner 2 - Institutul de Cercetări Biologice, Cluj-Napoca

Project coordinator: Dr. BERCEA VICTOR, Biolog

Researchers: Dr. DRAGOŞ NICOLAE, Biolog

NICOARĂ ANA, Chimist

VASILESCU CĂTĂLINA, Biolog

PUIAC SPERANŢA, Biolog

DRUGĂ BOGDAN, Biolog

Technicians: MOLDOVAN DORINA, Tehnician

IABLONOVSCHI ZOLTAN, Tehnician

PAŞCA TEOFIL, Tehnician

 

Partner 3 - ADCON TELEMETRY SRL, Bucuresti

Project coordinator: OPREA NICOLAE, Economist

Researchers: MAXIMILIAN NICOLAE, Inginer

POPEANGA MIHAITA, Inginer

OPREA VLAD CLAUDIU, Economist

 

 

Partners

Project coordinator:

National Institute for Research and Development for Isotopic and Molecular Technologies, Cluj-Napoca

Partner 1:

University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca

Partner 2:

Institute of Biological Research, Cluj-Napoca

Partner 3:

ADCON TELEMETRY SRL, Bucuresti