DFT Modeling of Singlet-Triplet Spin Transitions in Ni(II)-based Macrocyclic-ligand Supramolecular Complexes

Attila Bende and Alex-Adrian Farcaş

INCDTIM Cluj-Napoca, Romania

Outline

- Spin transitions in organometallics
- Theoretical description using first principle methods
- Spin transitions in large molecular complexes
- The role of different XC functionals

Spin transitions in organometallics

 $3d_{x^{2}-y^{2}}$

X

х

 $3d_{vz}$

3d orbitals of Ni(II)

"Square-planar" coordination of the Ni(II) in **singlet** spin configuration

"Octahedral" coordination of the Ni(II) in **triplet** spin configuration

Spin transitions in organometallics

Theoretical description using first principle methods

- Strong multireference character of the electronic states due to the close-lying *d* orbitals and charge transfer effects.

Needs mult settle het nos MSPF, MRCI, etc.

Maximum: (20,10+5) - 20 electron with 10 occupied and 5 virtual orbitals **Ni-porphyrin:** 8 d e o N + 8 long pair e of N-s + 4 x 4p e of pyrrole = 32 e in the active space (16 occupied orbitals)

- Active space: (32,22)
- **Dynamic electron correlation** due to the pair (or higher) correlation between the electrons.

Question: Which one?

Song et al. J. Chem. Theory Comput. 2018, 14, 2304–2311

DMC - Diffusion Monte-Carlo method

Spin transitions in large molecular complexes

Ni-tetrakis(pentafluorophenyl)porphyrin functionalized with a single phenazopyridine arm (NiTPP-PAPy)

Spin transitions in large molecular complexes Light-induced excited state spin trapping (LIESST)

The first experiment was done in 1985 by Decurtins et al in solid phase structures based on Fe(II) 53-61 K temperature.

In liquid phase, at room temperature (Science, 2011, 331, 445):

 $trans \qquad (N1PP-P)$ $trans \qquad low-spin \\ diamagnetic \qquad R=C_6F_5 \qquad high-spin \\ paramagnetic \qquad paramagnetic \qquad results of the spin \\ paramagnetic \qquad results of the spin \\ results of$

Ni-tetrakis(pentafluorophenyl)porphyrin functionalized with a single phenazopyridine arm (NiTPP-PAPy)

Adiabatic energy gap: $\Delta E = E(LS) - E(HS)$

The role of different XC functionals

Values		XC Functionals				
	B3LYP	CAM-B3LYP	CAM-B3LYP-D	M06-L (0%)	M06 (27%)	M06-2X (54%)
E _{singlet} (H)	-5498.61471573	-5497.04107263	-5497.20375561	-5498.03480956	-5496.26727825	-5497.12149327
E _{triplet} (H)	-5498.61345808	-5497.04602376	-5497.21386662	-5498.04036581	-5496.26884836	-5497.15024947
Gap _{S-T} (eV)	0.034	-0.134	-0.275	-0.151	-0.043	-0.782
(Ni – N) _s (Å)	4.982	4.456	3.597	3.415	3.723	2.981
(Ni – N)⊤ (Å)	2.1220	2.113	2.089	2.107	2.097	2.144
Values			XC Fun	ctionals		
	M11-L	M11	MN12-L	MN12-SX	N12	N12-SX
E _{singlet} (H)	-5497.71462536	-5496.80021728	-5495.28011221	-5495.77722521	-5499.22857347	-5496.39404762
E _{triplet} (H)	-5497.72473013	-5496.81505495	-5495.25499857	-5495.76889684	-5499.20143900	-5496.38599753
Gap _{S-T} (eV)	-0.275	-0.403	0.683	0.227	0.738	0.219
(Ni – N) _s (Å)	4.206	2.963	3.288	3.321	5.718	4.565
(Ni – N)⊤ (Å)	2.056	2.122	2.028	2.089	2.048	2.105

B3LYP vs. B3LYP-D

Values	B3LYP	B3LYP-D	
E _{singlet} (H)	-5498.61471573	-5498.92166059	
E _{triplet} (H)	-5498.61345808	-5498.92907580	
Gap _{s-T} (eV)	0.034	-0.202	
(Ni – N)s (Å)	4.982	3.918	
(Ni – N)⊤ (Å)	2.1220	2.093	

B3LYP:

- Exchange: Becke's 1988 functional, with
 Slater exchange + Hartree-Fock exchange
 (20%)
- Correlation: Non-local: LYP and local: VWN
- Dispersion: GD3BJ D3 version of Grimme's dispersion with Becke-Johnson damping

B3LYP vs. CAM-B3LYP vs. CAM-B3LYP-D

Values	B3LYP	CAM-B3LYP	CAM-B3LYP-D
E _{singlet} (H)	-5498.61471573	-5497.04107263	-5497.20375561
E _{triplet} (H)	-5498.61345808	-5497.04602376	-5497.21386662
Gap _{s-т} (eV)	0.034	-0.134	-0.275
(Ni – <u>N)</u> s (Å)	4.982	4.456	3.597
(Ni – <u>N)</u> ⊺ (Å)	2.1220	2.113	2.089

CAM-B3LYP:

Exchange: Becke's 1988 functional, with
 Slater exchange + Hartree-Fock exchange
 (from 20% to 60% at long range)

HF exchange : ≈ 0.16 eV lower energy and ≈ 0.5 Å shorter Ni - N bond distance
HF exchange + Dispersion effects: ≈ 0.3 eV lower energy and 1.5 Å shorter Ni - N bond distance

B3LYP vs. B3LYP*

Values	B3LYP	B3LYP*
E _{singlet} (H)	-5498.61471573	-5496.18990398
E _{triplet} (H)	-5498.61345808	-5496.18318044
Gap _{s-T} (eV)	0.034	0.183
(Ni – <u>N)</u> s (Å)	4.982	4.932
(Ni – <u>N)</u> ⊺ (Å)	2.1220	2.093

B3LYP*:

- Exchange: Becke's 1988 functional, with Slater exchange + Hartree-Fock exchange (15%)

Assertion and validation of the performance of the B3LYP* functional for the first transition metal row and the G2 test set <u>Oliver Salomon</u>, <u>Markus Reiher</u>, and <u>Bernd Artur Hess</u> The Journal of Chemical Physics **117**, 4729 (2002);

5% lower HF exchange: ~ **0.15 eV higher energy** but **NO Ni - N bond distance changes**

B3LYP vs. HSE06 vs. ωB97XD

Values	B3LYP	HSE06	ω B97XD
E _{singlet} (H)	-5498.61471573	-5494.43471857	-5497.36011055
E _{triplet} (H)	-5498.61345808	-5494.44298836	-5497.37234510
Gap _{s-T} (eV)	0.034	-0.225	-0.333
(Ni – N)s (Å)	4.982	4.611	3.295
(Ni – N)⊤ (Å)	2.1220	2.104	2.101

HSE06:

- Exchange: short range mixed PBE and HX exchange; long range - only PBE exchange
 ωB97XD
- Becke's 97 DFT exchange + Hartree-Fock exchange (from 22% to 44% at long range)
- empirical dispersion correction

Mo6-L vs. Mo6 vs. Mo6-2X

Values	M06-L	M06 (27%)	M06-2X (54%)
E _{singlet} (H)	-5498.03480956	-5496.26727825	-5497.12149327
E _{triplet} (H)	-5498.04036581	-5496.26884836	-5497.15024947
Gap _{s-т} (eV)	-0.151	-0.043	-0.782
(Ni – N)s (Å)	3.415	3.723	2.981
(Ni – N)⊤ (Å)	2.107	2.097	2.144

M06-L:

- Exchange: Mixture of PBE and LSDA
- Correlation: VSXC and treat the opposite-spin and parallel-spin correlation differently

M06 with 27% HF exchange: - decreases the Gap and enlarge the Ni - N bond distance M06 with 54% HF exchange: - increases the Gap and shorten the Ni - N bond distance

M11-L vs. M11

Values	M11-L	M11	
E _{singlet} (H)	-5497.71462536	-5496.80021728	
E _{triplet} (H)	-5497.72473013	-5496.81505495	
Gap _{s-T} (eV)	-0.275	-0.403	
(Ni – N)s (Å)	4.206	2.963	
(Ni – N)⊤ (Å)	2.056	2.122	

M11-L:

 Exchange: Dual-Range Exchange with LSDA and PBE functionals but with different mixing scheme for short- and long-range

- M11

- Hartree-Fock exchange (from 42.8% to 100% at long range)

Increase the HF exchange: - increases the adiabatic Gap and shorten the Ni - N bond distance

MN12-L vs. MN12-SX

Values	MN12-L	MN12-SX	
E _{singlet} (H)	-5495.28011221	-5495.77722521	
E _{triplet} (H)	-5495.25499857	-5495.76889684	
Gap _{s-T} (eV)	0.683	0.227	
(Ni – N)s (Å)	3.288	3.321	
(Ni – N)⊤ (Å)	2.028	2.089	

MN12-L:

- Exchange: LSDA with screening at long range MN12-SX
- Hartree-Fock exchange (from 25% to 36% at long range)

The lower energy is the singlet state energy !!!

Increase the HF exchange: - decreases the adiabatic Gap and a bit enlarge the Ni - N bond distance

M06-2x vs. M11 vs. MN12-SX

Values	M06-2X	M11	MN12-SX
E _{singlet} (H)	-5497.12149327	-5496.80021728	-5495.77722521
E _{triplet} (H)	-5497.15024947	-5496.81505495	-5495.76889684
Gap _{s-т} (eV)	-0.782	-0.403	0.227
(Ni – N)s (Å)	2.981	2.963	3.321
(Ni – N)⊤ (Å)	2.144	2.122	2.089

Lower energy:

M06-2X - triplet M11 - triplet MN12-SX - singlet

M06-2X to M11: - decreases the adiabatic Gap but give almost the same geometry M11 to MN12-SX: - gives the singlet configuration as the lower energy and enlarge the Ni - N bond distance

Question: Which one? Answer: I don't know.

What we know:

- Dispersion effects have a significant role it needs to be included
- Excess amount of HF exchange can induce large errors in the static correlation effects
- Lack or small amount of HF exchange can induce large self-interaction errors

Solution: Use moderate HF exchange

Hopes that in this way you get **fortuitous cancellation of errors** between the static correlation effects and the self-interaction errors

Keep in mind:

- The "game" with HF exchange amount could never cover the "real" dispersion effects

The best solution for our particular case:

MN12-SX - also based on comparison with experimental data, like, UV absorption spectra

ISC - intersystem crossing

Singlet-triplet transition over the excited states:

Financial support

- Program PN III P4 Cercetare Fundamentală și de Frontieră
- Project type : Proiecte de cercetare exploratorie (PCE2016)
- Project code: PN-III-P4-ID-PCE-2016-0208
- Contract Number: 64/2017
- Period: 2017-2019

Thank you for your attention

