Scientific papers
2023
- A. R. Hategan, M. David, A. Dehelean, G. Cristea, R. Puscas, A. J. Molnar, D. A. Magdas, Impact of Pre-Processing Methods for the Identification of the Botanical Origin of Honey Based Upon Isotopic and Elemental Profiles, Analytical Letters, 56(2), 231-243 (2023) https://doi.org/10.1080/00032719.2022.2044347
- C. Berghian-Grosan, A. R. Hategan, M. David, D. A. Magdas, Untargeted metabolomic analysis of honey mixtures: Discrimination opportunities based on ATR-FTIR data and machine learning algorithms, Microchemical Journal, 188, 108458 (2023) https://doi.org/10.1016/j.microc.2023.108458
- D. A. Magdas, C. Berghian-Grosan, Botanical honey recognition and quantitative mixture detection based on Raman spectroscopy and machine learning, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 293, 122433 (2023) https://doi.org/10.1016/j.saa.2023.122433
2022
- M. David, A. R. Hategan, D. A. Magdas, C. Berghian-Grosan, B. Simionescu, Botanical Origin Assessment of Honey Based on ATR-IR Spectroscopy: A Comparison between the Efficiency of Supervised Statistical Methods and Artificial Intelligence. Applied Sciences, 12(19), 9645 (2022) https://doi.org/10.3390/app12199645
- M. David, A. R. Hategan, C. Berghian-Grosan, D.A. Magdas, The Development of Honey Recognition Models Based on the Association between ATR-IR Spectroscopy and Advanced Statistical Tools. International Journal of Molecular Sciences, 23(17), 9977 (2022) https://doi.org/10.3390/ijms23179977
- A. R. Hațegan, D. A. Magdas, R, Puscas, A. Dehelean, G. Cristea, B. Simionescu, Machine Learning Algorithms in Corroboration with Isotope and Elemental Profile – An Efficient Tool for Honey Geographical Origin Assessment, Applied Sciences, 12(21), 10894 (2022) https://doi.org/10.3390/app122110894
- R. C. Suciu, F. Guyon, D. A. Magdas, Application of emission–excitation matrices in parallel with factor analysis with other chemometric techniques for honey classification, Journal of Food Composition and Analysis 107, 104401 (2022) https://doi.org/10.1016/j.jfca.2022.104401
- A. R. Hategan, F. Guyon, D. A. Magdas, The improvement of honey recognition models built on 1H-NMR fingerprint through a new proposed approach for feature selection, Journal of Food Composition and Analysis, 114, 104786 (2022) https://doi.org/10.1016/j.jfca.2022.104786
2021
- A. R. Hategan, R. Puscas, G. Cristea, A. Dehelean, F. Guyon, A. J. Molnar, V. Mirel, D. A. Magdas. Opportunities and Constraints in Applying Artificial Neural Networks (ANNs) in Food Authentication. Honey – A Case Study. Applied Sciences 11, 6723 (2021): https://doi.org/10.3390/app11156723
Book chapters:
- A.M. Pintea, D.A. Magdas (2022) Chapter „Analytical Techniques for the Biochemical Profiling in Seabuckthorn” in „The Seabuckthorn Genome, Compendium of Plant Genomes”, Springer Nature, 1-36
- D.A. Magdas, C. Berghian‐Grosan (2021) Chapter „Raman Spectroscopy” in „Electromagnetic Technologies in Food Science”, John Wiley & Sons Ltd., 310-336.