Brief Description

Project brief description

A broad variety of organic compounds have been proposed and studied as electrode materials for batteries over the last decades. However, to date, none of these chemistries are practically suitable for ready-to-assemble Li-ion battery applications. The conjugated sulfonamides (CSA) organic lithium ion cathode materials proposed recently pave the way to new avenues in the field or organic batteries; in particular, the MOFs fabricated using the CSAs have the potential to reach technological maturity. Our investigations are focus on the study of the stability for a class of 25 structure of type CAS-MOF under cyclic voltametry. Chemical stability will be investigated by analyzing relevant information produced by density functional theory: Bader charges and bond-orders in different redox states, in bulk phase as well as in the molecular form; in this late case, we’ll take into account the presence of solvents. The thermodynamic stability will be investigated via the vibrational entropy of the CSA-MOFs as a function of temperature. Calculations will be done in two parts: ab-initio molecular dynamics, and the analysis of the atomic speeds by Fourier transform in the second part. The results are the vibrational density of states and thermodynamic potentials. The effect of our investigation is to speed up the progress in the field of CSA-MOF organic electrodes by using accurate predictions to narrow the spectrum of systems to be investigated in detail as cathode material.