Project abstract

In search of solutions for the transition to an efficient circular economy in the construction materials sector that would reduce the use of natural resources and the impact of waste on the environment, we propose the development of a demonstration model for a bituminous mastic material as an alternative to the one currently used for sealing joints and cracks in road maintenance.

The starting point of the project is the recent results in obtaining a composite based on industrial waste which can be used as a substitute for the mineral filler in the composition of bituminous mastic. The sealing compounds must have a certain density, water and frost resistance, good adhesion to the asphalt material surface and adequate elasticity. In order to preserve the physical and mechanical properties of the bituminous mastic, the proposed composite will gradually replace the initial concentration of the filler.

The materials obtained will be evaluated in terms of physico-chemical properties and interaction with bitumen in a feedback loop to optimize the initial recipe. Furthermore they will be tested at laboratory level in relation to the corresponding standards in the field of bituminous products currently used on the market. In order to validate the expected performances and functionalities in the laboratory for this type of material evaluation of its behavior under simulation of relevant operating conditions and of the external environmental factors will be performed.

To the knowledge of the members of the research team, combining these wastes and incorporating them into the bitumen-based material to obtain a new product used in the road construction industry is a new idea both nationally and internationally.

The results of this project proposal can generate many economic and environmental benefits by mitigating waste effects on the environment and reducing the consumption of materials from non-renewable sources.