Brief Description


Project brief description

Despite decades of negative predictions about the demise of the industry or future existence, the lead-acid battery persists to lead the whole battery energy storage business around the world. They continued to be less expensive in comparison with the present-day technologies, being attractive in terms of robustness, tolerance to abuse, power-to-weight ratio, long lifetime, needed to provide high currents in starting car engines. Accumulating over time a well-established and evolved technology base, in particular in the automotive industry, they still emphasize a huge advantage. Nevertheless, during the last years, it was obvious that utilization requirements are changing rapidly, becoming more demanding than ever. The huge interest in optimizing the metallic grids (MG) in the positive electrode originates in the large differences between the electric conductibility of the lead and that of the lead dioxide (i.e. active material). Thus, our aim is to fabricate an improved lead-acid battery, by following successive steps in the optimization of its electrodes. The final result of the project is the redesigned working battery for start and stop automobiles, in which the battery needs to support at least 2 times more cycles than all conventional ranges, and a high load capacity for faster energy recovery while driving. The results produced within the project will form a pool of knowledge to be translated into technological developments, allowing the shift to industrial scale.